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Abstract

Molecule optimization is about generating molecule Y with
more desirable properties based on an input molecule X . The
state-of-the-art approaches partition the molecules into a large
set of substructures S and grow the new molecule structure by
iteratively predicting which substructure from S to add. How-
ever, since the set of available substructures S is large, such an
iterative prediction task is often inaccurate especially for sub-
structures that are infrequent in the training data. To address
this challenge, we propose a new generating strategy called
“Copy&Refine” (CORE), where at each step the generator first
decides whether to copy an existing substructure from input
X or to generate a new substructure, then the most promising
substructure will be added to the new molecule. Combining
together with scaffolding tree generation and adversarial train-
ing, CORE can significantly improve several latest molecule
optimization methods in various measures including drug like-
ness (QED), dopamine receptor (DRD2) and penalized LogP.
We tested CORE and baselines using the ZINC database and
CORE obtained up to 11% and 21% relatively improvement
over the baselines on success rate on the complete test set and
the subset with infrequent substructures, respectively.

Introduction
Designing molecules or chemical compounds with desired
properties is a fundamental task in drug discovery. Since the
number of drug-like molecule is large as estimated between
1023 and 1060 (Polishchuk, Madzhidov, and Varnek 2013),
traditional methods such high throughput screening (HTS) is
not scalable. One particular task in drug discovery is called
lead optimization, where after a drug candidate (a hit) is iden-
tified via HTS, enhanced similar candidates are created and
tested in order to find a lead compound with better properties
than the original hit. To model lead optimization as a machine
learning problem, the training data involves a set of paired
molecules that map input molecule X to target molecule Y
with more desirable properties. The goal is to learn a gen-
erating model that can produce target molecules with better
properties from an input molecule.

Automatic molecular generation algorithms have made
great progress in recent years thanks to the successful use
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of deep generative models (Jin, Barzilay, and Jaakkola 2018;
Liu et al. 2018; Zhou et al. 2019; Jin et al. 2019). Early
ones cast the molecular generation as a sequence generation
problem since a molecule can be represented by a SMILES
string1 (Kusner, Paige, and Hernández-Lobato 2017; Dai et
al. 2018; Gómez-Bombarelli et al. 2018). However, many
of those algorithms generate many invalid SMILES strings
which do not correspond to any valid molecules.
Progress: Recent years graph generation methods have been
proposed to bypass the need to produce a valid SMILES
string by directly generating molecular graphs(Jin, Barzilay,
and Jaakkola 2018; Jin et al. 2019; Ma, Chen, and Xiao 2018).
These graph based approaches reformulate the molecular gen-
eration task as a graph-to-graph translation problem, which
avoid the need of generating SMILES strings. Their key strat-
egy is to partition the input molecule graph into a scaffolding
tree of substructures (e.g., rings, atoms, and bonds), and to
learn to generate such a tree. All possible tree nodes lead to a
large set of substructures, e.g., around 800 unique substruc-
tures in the ZINC database (Sterling and Irwin 2015).
Challenge: However, the graph generation methods still
exhibit undesirable behaviors such as generating inaccurate
substructures because the set of all possible substructures is
large, especially for infrequent substructures. In each gener-
ating step, the model has to decide which substructure to add
from a large set of possible substructures. On the other hand,
from real data we observe

• Stable principle: Vast majority of substructures in target
molecules are from the input molecule. The first row of
Table 1 shows about and over 80% substructures are from
the input molecule in four datasets/tasks.

• Novelty principle: New substructures are present in most
target molecules. The second row of Table 1 shows that for
80% target molecules have new substructures compared
with their corresponding input molecules.

Based on these observations, we propose a new strategy for
molecular optimization called Copy & Refine (CORE). The
key idea is at each generating step, CORE will decide whether

1The Simplified Molecular-Input Line-Entry System (SMILES)
is a specification in the form of a line notation for describing the
structure of chemical species using short ASCII strings.



Table 1: Comparison between input and target molecules on 4
datasets/tasks. Stable principle: Row 1 shows the percentage of
original substructures in the target molecule, which is about 80% or
more and indicates many original substructures are kept in the newly
generated targets. Novelty principle: Row 2 shows the percentage
of targets have any new substructures that do not belong to the input
molecule, which is also high and indicates the need for including
new substructures in the targets. Row 3 lists the number of all the
substructure, i.e., |S| and Row 4 lists the average substructures for
molecules.

DRD2 LogP04 LogP06 QED
% of original 80.42% 79.47% 88.90% 83.32%
% of novel 86.40% 84.06% 70.14% 80.84%

# substructures 967 785 780 780
Molecule size 13.85 14.30 14.65 14.99

to copy a substructure from the input molecule (Copy) or sam-
ple a novel substructure from the entire space of substructures
(Refine).

We compare CORE with different baselines and demon-
strate significant performance gain in several metrics includ-
ing drug likeness (QED), dopamine receptor (DRD2) and
penalized LogP. We tested CORE and baselines using the
ZINC database and CORE achieved up to 11% and 21% rela-
tively improvement over the baselines on success rate on the
complete test set and the subset with infrequent substructures,
respectively.

The rest of paper is organized as follows. We briefly re-
view related work on molecule generation. Then we describe
CORE method. Finally, we show empirical studies and con-
clude our paper.

Related Work
We review related works in molecule generation.

Sequence-based methods One research line is to formu-
late molecular generation as a sequence based problem (Dai
et al. 2018; Kusner, Paige, and Hernández-Lobato 2017;
Zhou et al. 2017; Gómez-Bombarelli et al. 2018; Hong et
al. 2019; Huang et al. 2020). Most of these methods are
based on the simplified molecular-input line-entry system
(SMILES), a line notation describing the molecular struc-
ture using short ASCII strings (Weininger 1988). Charac-
ter Variational Auto-Encoder (C-VAE) generates SMILES
string character-by-character (Gómez-Bombarelli et al. 2018).
Grammar VAE (G-VAE) generates SMILES following syn-
tactic constraints given by a context-free grammar (Kus-
ner, Paige, and Hernández-Lobato 2017). Syntax-directed
VAE (SD-VAE) that incorporates both syntactic and seman-
tic constraints of SMILES via attribute grammar (Dai et
al. 2018). Reinforcement learning (RL) is also used to gen-
erate SMILES strings (Popova, Isayev, and Tropsha 2018;
Olivecrona et al. 2017). However, many generated SMILES
strings using these methods are not even syntactically valid
which lead to inferior results.

Table 2: Important notations used in the paper.
Notations short explanation
(X,Y ) input-target molecule pair
S substructure set S (a.k.a. vocabulary)

V/E set of vertex(atom) / edge(bond)
G = (V,E) molecular graph
TG = (V, E) scaffolding tree of graph G

N(v) set of neighbor nodes of vertex v
fv/fuv feature vector for node v / edge (u, v)

v
(t)
uv message for edge (u, v) at the t-th iteration

xG
i /x

T
i embedding of node i in G / T ,

XG the set of node embedding XG = {xG
1 , · · · }

hit,jt message vector for edge (it, jt)
zG Embedding of Graph G
ptopo
t topological prediction score

qsub
t /q̃sub

t pred. dist. over all substructures
gi(·), i = 1, · · · , 6 parameterized neural networks

Graph-based methods Another research line is to di-
rectly generate molecule graphs. Comparing sequence based
method, graph-based methods bypass the need of generating
valid sequences (e.g., SMILES strings) all together. As a
result, all the generated molecules are valid and often with
improved properties. The original idea of (Jin, Barzilay, and
Jaakkola 2018) is to eliminate cycles in a molecular graph by
representing the graph as a scaffolding tree where nodes are
substructures such as rings and atoms. Then a two-level gener-
ating function is used to create such a tree then decode the tree
into a new molecular graph. Recently another enhancement
is produced called graph-to-graph translation model (Jin et al.
2019), which extends the junction variational autoencoder via
attention mechanism and generative adversarial networks. It
is able to translate the current molecule to a similar molecule
with prespecified desired property (e.g., drug-likeness). Also
a RL based method with graph convolutional policy network
has been proposed to generate molecular graphs with desir-
able properties (You et al. 2018). However, these graph based
models require to iteratively predict the best substructure
to add from a large set of possible choices, which is often
inaccurate especially for the rare substructures. We overcome
this limitation using a hybrid strategy which involves copy
from the input molecule then refine it by selectively adding
new substructures.

Method
In this section, we first describe overall framework of CORE
which shares the same foundation as (Jin et al. 2019) . Then
we present model enhancement that CORE introduces namely
the copy & refine strategy. We list some important notations
and their short explanations in Table 2.

Overview
Graph-to-graph model involves two important structures:
• molecular graph G is the graph structure for a molecule;
• scaffolding tree TG (also referred as junction trees in (Jin

et al. 2019)) is the skeleton of the molecular graph G
by partitioning the original graph into substructures (sub-
graphs), and connecting those substructures into a tree.
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Figure 1: Pipeline for Graph-to-Graph Model. Encoder include both graph and scaffolding tree levels. Decoding mainly split two
parts scaffolding tree decoder and graph decoder. scaffolding tree decoder generate molecule in greedy manner using Depth First
Search with topological and substructure prediction on each node. To assemble the node of scaffolding tree into the molecule,
graph decoder enumerates all possible combinations.

Given a molecule pair (inputX and target Y ), we first train
encoders to embed both G and TG for input X into vector
representations via a message passing algorithm on graphs (or
trees). Finally two-level decoders are introduced to create a
new scaffold tree and the corresponding molecular graph. Our
main methodology contribution lies in the decoder module
where we propose a copy & refine strategy to create novel but
stable molecules from input molecules. The model is trained
with a set of molecule pairs (X,Y ), where Y is a target
molecule that is optimized with better chemical properties
based on the input molecule X .

Encoder
To construct cycly-free structures, scaffolding tree TG is gen-
erated via contracting certain vertices of G into a single node.
By viewing scaffolding tree as graph, both input molecular
graphs and scaffolding trees can be encoded via graph Mes-
sage Passing Networks (MPN) (Dai, Dai, and Song 2016;
Jin, Barzilay, and Jaakkola 2018). The encoder yields an
embedding vector for each node in either scaffolding tree
or the input molecular graph. More formally, on node level
fv denotes the feature vector for node v. For atoms, fv in-
cludes the atom type, valence, and other atomic properties.
For nodes in the scaffolding tree representing substructures,
fv is a one-hot vector indicating its substructure index. On
the other hand, on edge level, fuv feature vector for edge
(u, v) ∈ E. N(v) denotes the set of neighbor nodes for node

v. vuv and vvu are the hidden variables that represent the
message from node u to v and vice versa. They are iteratively
updated via a fully-connected neural network g1(·):

v(t)
uv = g1

(
fu, fuv,

∑
w∈N(u)\v

v(t−1)
wu

)
, (1)

where v
(t)
uv is the message vector at the t-th iteration, whose

initialization is v(0)
uv = 0. After T steps of iteration, another

network g2(·) is used to aggregate these messages. Each
vertex has a latent vector as

xu = g2
(
fu,

∑
v∈N(v)

v(T )
vu

)
, (2)

where g2(·) is another fully-connected neural network.
In summary, the encoder module yield embedding vectors

for nodes in graph G and scaffolding tree TG, denoted XG =
{xG

1 ,x
G
2 , · · · } and XTG = {xTG1 ,xTG2 , · · · }, respectively.

Decoder

Once the embedding vectors are constructed, decoder can
also be divided into two phases in coarse-to-fine manner: (a)
tree decoder; (b) graph decoder. We firstly discuss scaffolding
tree decoder. Our method improve the tree decoder in (Jin et
al. 2019), so we describe the enhancement in detail.



A. Tree decoder The objective of the scaffolding tree de-
coder is to generate a new scaffolding tree from the embed-
dings. The overall idea is to generate one substructure at a
time from an empty tree, and at each time we decide whether
to expand the current node or backtrack to its parent (topolog-
ical prediction) and which to add (substructure prediction).
The generation will terminate once the condition to backtrack
from the root is reached.

More specifically the tree decoder has two prediction tasks:
• Topological prediction: When the decoder visit the node
it, the model has to make a binary prediction on either
“expanding a new node” or “backtracking to the parent
node of it”.

• Substructure prediction: If the decoder decides to ex-
pand, we have to select which substructure to add by either
copying from original input or selecting from the global
set of substructures.

Topological prediction: The idea is to first enhance the em-
bedding for node it via a tree-based RNN (Jin, Barzilay, and
Jaakkola 2018), then use the enhanced embedding to pre-
dict whether to expand or backtrack. Given scaffolding tree
TG = (V, E), the tree decoder uses the tree based RNN with
attention mechanism to further improve embedding informa-
tion learned from the original message-passing embeddings
XT . Since RNN works on a sequence, the tree converts into
a sequence of nodes and edges via depth-first search. Specifi-
cally, let Ẽ = {(i1, j1), (i2, j2), · · · , (im, jm)} be the edges
traversed in depth first search, each edge is visited twice in
both directions, so we have m = |Ẽ | = 2|E|. Suppose Ẽt is
the first t edges in Ẽ , message vector hit,jt is updated as:

hit,jt = GRU(fit , {hk,it}(k,it)∈Ẽt,k 6=jt
). (3)

The probability whether to expand or backtrack at node it
is computed via aggregating the embeddings XT , XG and
the current state fit ,

∑
(k,it)∈Ẽt hk,it using a neural network

g3(·):

ptopo
t = g3(fit ,

∑
(k,it)∈Ẽt

hk,it ,X
T ,XG),

where t = 1, · · · ,m.
(4)

Concretely, firstly compute context vector ctopo
t using atten-

tion mechanism2, then concatenate ctopo
t and fit , followed by

a fully connected network with sigmoid activation.
Substructure prediction: Once the node expansion is de-
cided, we have to find what substructures to add. Empirically
we observe this step is most challenging one as it leads to
largest error rate. For example, during training procedure
of QED dataset, topological prediction and graph decoding
(mentioned later) can achieve 99%+ and 98%+ classification
accuracy, respectively. In contrast, substructure prediction
can achieve at most 90% accuracy, which is much lower. We
design CORE strategy to enhance this part. The idea is every
time after expanding a new node, the model have to predict its

2same procedure as Equation (5) and (6), but different parame-
ters

substructure from all the substructures in vocabulary. First we
use attention mechanism to compute context vector based on
current message vector hit,jt and node embedding XT ,XG:

csub
t = Attention(hit,jt ,X

T ,XG), (5)

Specifically, we firstly compute attention weight via

αTj = g4(hk,it ,x
T
j ), αTi ∈ R,

[αT1 ,α
T
2 , · · · ] = Softmax([αT1 ,α

T
2 , · · · ]),

(6)

where g4(·) is dot-product function (Vaswani et al. 2017).
{αG} are generated in same way. Then context vector is gen-
erated via concatenating tree-level and graph-level context
vector

csub
t =

[∑
i

αTi x
T
i ,
∑
j

αG
j x

G
j

]
. (7)

Then based on attention vector csub
t and message vector

hit,jt , g5(·), a fully-connected neural network with softmax
activation, is added to predict the substructure:

qsub
t = g5(hit,jt , c

sub
t ), (8)

where qsub
t is a distribution over all substructures.

However, the number of all possible substructures is usu-
ally quite large, for example, in Table 1, the vocabulary size
of DRD2 dataset is 967, which means the number of cat-
egories is 967, which makes prediction more challenging
especially for the rare substructures.

Inspired by pointer network (Vinyals, Fortunato, and Jaitly
2015; See, Liu, and Manning 2017) we design a similar
strategy to copy some of the input sequence to the output.
However, pointer network does not handle the case where the
target molecule contains Out-of-Input (OOI) substructures,
i.e., a novel substructure is not part of the input molecule.
Borrowing the idea from sequence-to-sequence model (Gu et
al. 2016; See, Liu, and Manning 2017), we design a method
to predict the weight of generating novel OOI substructures.

Refine with novel substructures First, we use context vec-
tor csub

t and embeddings of input molecule graph and its
scaffolding tree to determine the weight of generating novel
substructures in current step,

wOOI
t = g6(c

sub
t , z), (9)

where g6(·) is a fully-connected neural network with sig-
moid activation. Thus, the weight ranges from 0 to 1. wOOI

t
represents the probability that the model generate OOI sub-
structure at t-th step. We assume that the weight depends
on not only the input molecule (global information) and the
current position in the decoder (local information). We use
a representation z to express the global information of input
molecule,

z =

[
1

|{xTi }|
∑
i

xTi ,
1

|{xG
j }|

∑
j

xG
j

]
(10)

where z is the concatenation of average embedding of all the
scaffolding tree node and average embedding of all the graph
node. Local information is represented by context vector csub

t
computed via attention mechanism.



Table 3: Statistics of 4 datasets, DRD2, QED, LogP04 and LogP06. “Avg # Substructures” is the average number of substructures
per molecule. For each test sample, we generate 20 molecules using different random seeds. “# Infreq Test” is the number of test
samples that contain at least one infrequent substructure.

Dataset # Training Pairs # Valid Pairs # Test (×20) # Infreq Test (×20) Vocab Size, |S| Avg # Substructures
DRD2 32,404 2,000 1,000 405 967 13.85
QED 84,306 4,000 800 294 780 14.99

LogP04 94909 5,000 800 287 785 14.30
LogP06 71,284 4,000 800 250 780 14.65

(a) DRD2 (b) QED

Figure 2: The frequency of different substructures on
DRD2(a) and QED datasets(b). It indicates that the distri-
bution of various substructures is highly imbalanced.

Copy existing substructures After obtaining the weight
of OOI substructure, we consider if and what substructures
to copy from input molecule. Each substructure in input
molecule has an attention weight (normalized, so the sum
is 1), which measure the contribution of the substructure to
decoder. Then we use it to represent the selection probability
for each substructure. Specifically, we define a sparse vector
a as

{a}i =
{ ∑

j∈C α
T
j , C = {j|j-th node is i-th substruct},

0, i-th substructure not in T ,
(11)

where a ∈ R|S|, |S| is size of {a}i represent i-th element of a.
Thanks to the normalization of attention weight (Equation 6)
{αT1 ,αT2 , · · · }, a is also normalized.

The prediction at t-step is formulated as a hybrid of
q̃sub
t = wOOI

t qsub
t + (1− wOOI

t )at. (12)

where wOOI
t balances the contributions of two distributions at

t-th step. If novel substructures are generated, we select the
substructure from all substructures according to distribution
qsub
t ). Otherwise, we use the pointer network (Vinyals, For-

tunato, and Jaitly 2015) to copy a certain substructure from
the input molecule. The selection criteria for substructures in
input molecule is proportional to the attention weight {αT }.
B. Graph decoder (Finetuning) Finally, we describe
graph decoder. The goal is to assemble nodes in scaffolding
tree together into the correct molecular graph (Jin, Barzilay,
and Jaakkola 2018), as shown in Figure 1. During learning
procedure, all candidate molecular structures {Gi} are enu-
merated and it is cast as a classification problem whose target
is to maximize the scoring function of the right structure Go

Lg = fa(Go)− log
∑
Gi

exp(fa(Gi)), (13)

where fa(Gi) = hGi
·zGo

is a scoring function that measure
the likelihood of the current structure Gi, zGo

is an embed-
ding of graph Go. On the other hand, when sampling, graph
decoder is to enumerate all possible combinations, and pick
the most likely structure in a greedy manner.

Adversarial Learning
Adversarial training is used to further improve the perfor-
mance, where the entire encoder-decoder architecture is re-
garded as the generator G(·), the target molecule Y is re-
garded as the real sample, discriminator D(·) is used to dis-
tinguish real molecules from generated molecules by our
decoder (Jin et al. 2019). Following (Jin et al. 2019), D(·) is
a multi-layer feedforward network.

Experiment
In the experiment section, we want to answer the following
questions:

• Q1: Can CORE generate better molecules than other graph-
based methods?

• Q2: How well does CORE handle input molecules with
rare substructures?

Molecular Data
First, we introduce the molecule data that we are using. ZINC
contains 250K drug molecules extracted from the ZINC
database (Sterling and Irwin 2015). We extract data pairs
from ZINC, which will be described later. We list the basic
statistics for the datasets in Table 3.

Molecular Properties

In drug discovery, some properties are crucial in evaluating
the effectiveness of generated drugs. In this paper, follow-
ing (Jin et al. 2019), we mainly focus on following three
properties.

• Dopamine Receptor (DRD2). DRD2 score is to measure
a molecule’s biological activity against a biological target
named the dopamine type 2 receptor (DRD2). DRD2 score
ranges from 0 to 1.

• Drug likeness (QED) (Bickerton et al. 2012). QED score
is an indicator of drug-likeness ranging from 0 to 1.

• Penalized LogP. Penalized logP is a logP score that ac-
counts for ring size and synthetic accessibility (Ertl and
Schuffenhauer 2009).



Table 4: Empirical results measured by Similarity for various methods on different datasets.

Method Test Set Test subset with infrequent substructures
QED DRD2 LogP04 LogP06 QED DRD2 LogP04 LogP06

JTVAE .2988 .2997 .2853 .4643 .2519 .2634 .2732 .4238
GCPN .3081 .3092 .3602 .4282 .2691 .2759 .2973 .3709

Graph-to-Graph .3145 .3164 .3579 .5256 .2723 .2760 .2901 .4744
CORE .3211 .3334 .3695 .6386 .2982 .3021 .3234 .5839

Table 5: Empirical results measured by Property(Y) for various methods on different datasets.

Method Test Set Test subset with infrequent substructures
QED DRD2 LogP04 LogP06 QED DRD2 LogP04 LogP06

JTVAE .8041 .7077 2.5328 1.0323 .7292 .6292 2.0219 .7832
GCPN .8772 .7512 3.0483 2.148 .7627 .6743 2.5413 1.813

Graph-to-Graph .8803 .7641 2.9728 1.983 .7632 .6843 2.4083 1.778
CORE .8952 .7694 3.1053 2.021 .7899 .7193 2.7391 1.820

For each SMILES string in ZINC, we generate the QED,
DRD2 and LogP scores using Rdkit package (Landrum 2013).
For all these three scores, higher is better. Thus, for the train-
ing data pairs (X,Y ), X is the input molecule with lower
scores while Y is a generated molecule with higher scores
based on X .

Generation of Training Pairs
To construct training data set, we find the molecule pair
(X,Y ) following (Jin et al. 2019), where X is the input
molecule and Y is the target molecule with desired property.
Both X and Y are from the whole dataset and have to satisfy
two rules: (1) they are similar enough, i.e., sim(X,Y ) ≥ η1;
(2) Y has significant property improvement over X , i.e.,
property(Y )−property(X) ≥ η2, property(·) can be DRD2,
QED, LogP score as mentioned above. η1 = 0.4 for LogP04
while η1 = 0.6 for LogP06. We use the public dataset in (Jin
et al. 2019) with paired data.

Infrequent Substructures We pay special attention on the
infrequent substructure. Based on observation from empirical
studies (for example in Figure 2), regarding a substructure
if it occurs less than 2,000 times in training set, we call it
“infrequent substructures“. Otherwise, we call it “frequent
substructure”.

Baseline Methods

We compare our method with some important baseline meth-
ods, which represents state-of-the-art methods on this task.
• JTVAE (Jin, Barzilay, and Jaakkola 2018). scaffolding

tree variational autoencoder (JTVAE) is a deep generative
model that learns latent space to generate desired molecule.
It also uses encoder-decoder architecture on both scaffold-
ing tree and graph levels.

• Graph-to-Graph (Jin et al. 2019). It is the most important
benchmark method as described above.

• GCPN (You et al. 2018) uses graph convolutional policy
networks to generate molecular structures with specific

properties. It exhibits state-of-the-art performance in RL-
based method.

Note that we also tried Sequence-to-Sequence
model (Sutskever, Vinyals, and Le 2014) on SMILES
strings, but the resulting model generates too many invalid
SMILES strings to compare with all the other graph-based
methods. This further confirmed that graph generation is a
more effective strategy for molecular optimization.

Evaluation
During evaluation procedure, we mainly focus on several
evaluation metrics, where X is the input molecule in test set,
Y is the generated molecule.
• Similarity. We evaluate the molecular similarity between

the input molecule and the generated molecule, measured
by Tanimoto similarity over Morgan fingerprints (Rogers
and Hahn 2010). The similarity between molecule X and
Y is denoted sim(X,Y ), ranging from 0 to 1.

• Property of generated Molecules. The second metric is
the property scores of generated molecules. It is defined
as Property(Y), where property could be including QED-
score, DRD2-score and LogP-score, evaluated using Rdkit
package (Landrum 2013).

• Success Rate (SR). Success Rate is a metrics that con-
sider both similarity and property improvement. Since the
task is to generate a molecule that (i) is similar to input
molecule and (ii) have property improvement at the same
time. We design a criteria to judge whether it satisfied
these two requirement: (a) Input and generated molecules
are similar enough, sim(X,Y ) ≥ λ1; (b) improvement are
big enough, i.e., property(Y ) ≥ λ2. The selection of λ1
and λ2 depend on datasets.

Among these metrics, similarity and property improvement
are the most basic metrics. For all these metrics except run
time and model size, higher values are better.

Implementation Details
In this section, we provide the implementation details for
reproducibility, especially the setting of hyperparameters.



Table 6: Empirical results measured by SR1 (Success Rate) for various methods on different dataset. For QED and DRD2,
regarding SR1, when the similarity between input and generated molecule (λ1) is greater than 0.3 and property of generated
molecule (λ2) is greater than 0.6, we regard it “success”. For LogP04 and LogP06, λ1 = 0.4 and λ2 = 0.8

Method Test Set Test subset with infrequent substructures
QED DRD2 LogP04 LogP06 QED DRD2 LogP04 LogP06

JTVAE 43.32% 34.83% 38.43% 43.54% 38.91% 29.32% 35.32% 40.43%
GCPN 47.71% 44.05% 56.43% 52.82% 42.80% 37.82% 42.81% 43.29%

Graph-to-Graph 48.16% 45.73% 56.24% 55.15% 43.43% 38.39% 42.83% 47.02%
CORE 50.26% 47.91% 56.47% 57.64% 47.82% 42.72% 45.01% 50.05%

Table 7: Empirical results measured by SR2 (Success Rate) for various methods on different dataset. For QED and DRD2,
regarding SR2, when the similarity between input and generated molecule is greater than 0.4 (λ1) and property of generated
molecule is greater than 0.8 (λ2), we regard it “success”. For LogP04 and LogP06, λ1 = 0.4 and λ2 = 1.2.

Method Test Set Test subset with infrequent substructures
QED DRD2 LogP04 LogP06 QED DRD2 LogP04 LogP06

JTVAE 20.72% 9.13% 21.32% 18.32% 17.53% 7.18% 19.93% 17.16%
GCPN 23.08% 14.94% 27.01% 25.29% 18.98% 12.64% 23.81% 23.02%

Graph-to-Graph 24.34% 15.31% 26.95% 25.30% 20.82% 12.88% 23.53% 23.82%
CORE 27.23% 17.31% 27.88% 26.58% 25.32% 15.26% 25.62% 25.91%

We follow most of the hyperparameter setting of (Jin et al.
2019). For all these baseline methods and datasets, maximal
epoch number is set to 10, batch size is set to 32. During
encoder module, embedding size is set to 300. The depth of
message passing network are set to 6 and 3 for tree and graph,
respectively. The initial learning rate is set to 1e−3 with the
Adam optimizer. Every epoch learning rate is annealed by
0.8. We save the checkpoint every epoch during training
procedure. When evaluating, from all the checkpoints, we
choose the one that achieves highest success rate (SR1) on
validation set as the best model and use it to evaluate the test
set. During adversarial training, discriminator D(·) is a three-
layer feed-forward network with hidden layer dimension 300
and LeakyReLU activation function. For all these datasets,
model size of CORE is around 4M, nearly same as Graph-to-
Graph model. The code is available3.

Results
The results for various metrics (including similarity, property
improvement, success rate) are shown in Table 4, 5, 6, 7,
respectively. Now we can answer three questions proposed
in the beginning of the section.

• Q1 Performance on all molecules: We compare CORE
with baseline methods on complete test sets. CORE out-
performs baselines in all the measures. Specifically, when
measured by success rates SR (both SR1 and SR2, Table 6
and 7), CORE obtained about 2% absolutely improvement
over the best baseline. When measured by SR2, it can
achieve over 10% relatively improvement on QED and
DRD2.

• Q2 Performance on molecules with infrequent sub-
structures: Test subset with infrequent substructures is

3https://github.com/futianfan/CORE

more challenging, because for all the methods the per-
formance would degrade on infrequent subset. Thus, it
is worth to pay special attention to the molecule with in-
frequent substructure. When measured on the test subset
with infrequent substructure, CORE achieves more signif-
icant improvement compared with the complete test set.
Concretely, CORE achieves 21% and 18% relatively im-
provement in success rate (SR2) in QED and DRD2, and
more than 3% absolutely improvement in SR (both SR1
and SR2). In a word, CORE gain more improvement in rare
substructure compared with the whole test set.

Conclusion

In this paper, we propose a deep generative model for cre-
ating molecules with more desirable properties than the in-
put molecules. The state-of-the-art Graph-to-Graph methods
grow the new molecule structure by iteratively predicting
substructures from a large set of substructures, which is chal-
lenging especially for infrequent substructures. To address
this challenge, we have propose a new generating strategy
called “Copy&Refine” (CORE), where at each step the gen-
erator first decides whether to copy an existing substructure
from input X or to generate a new substructure from the
large set. The resulting CORE mechanism can significantly
outperform several latest molecule optimization baselines in
various measures, especially on rare substructure.
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