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Abstract

The Hamiltonian Monte Carlo (HMC) method
has become significantly popular in recent years.
It is the state-of-the-art MCMC sampler due to
its more efficient exploration to the parameter
space than the standard random-walk based pro-
posal. The key idea behind HMC is that it makes
use of first-order gradient information about the
target distribution. In this paper, we propose
a novel dynamics using second-order geometric
information about the desired distribution. The
second-order information is estimated by using a
quasi-Newton method (say, the BFGS method),
so it does not bring heavy computational bur-
den. Moreover, our theoretical analysis guaran-
tees that this dynamics remains the target distri-
bution invariant. As a result, the proposed quasi-
Newton Hamiltonian Monte Carlo (QNHMC) al-
gorithm traverses the parameter space more ef-
ficiently than the standard HMC and produces
a less correlated series of samples. Finally,
empirical evaluation on simulated data verifies
the effectiveness and efficiency of our approach.
We also conduct applications of QNHMC in
Bayesian logistic regression and online Bayesian
matrix factorization problems.

1 Introduction

Hamiltonian Monte Carlo (HMC) (Neal, 2011) is the state-
of-the-art MCMC sampling algorithm. It defines a Hamil-
tonian function in terms of a potential energy—the negative
logarithm of the target distribution and a kinetic energy pa-
rameterized by an auxiliary variable called momentum. By
simulating from such a dynamical system, the proposal of
distant states can be achieved. The attractive property of
HMC is its rapid exploration to the state space. The main
reason is that HMC makes use of the first-order gradient
about the target distribution so that random-walk behaviors

are suppressed to a great extent.

Along the idea of HMC, stochastic gradient MCMC al-
gorithms have received great attention (Welling and Teh,
2011; Ahn, Korattikara, and Welling, 2012; Patterson and
Teh, 2013; Chen, Fox, and Guestrin, 2014; Ding et al.,
2014). Recently, Ma, Chen, and Fox (2015) proposed
a general framework for this kind of stochastic gradient
MCMC algorithms, which is built on a skew-symmetry
structure. This structure represents determining traversing
effect in HMC procedure and becomes one motivation of
our new dynamics.

On the other hand, it is well established that the Newton
or quasi-Newton methods using second-order information
are more advanced than first-order gradient methods in the
numerical optimization community (Nocedal and Wright,
2006). Since the Newton method is deemed to be computa-
tionally intensive, the quasi-Newton method is widely used
in practice. In this paper, we explore the possibility of mar-
rying the second-order gradient with HMC. Intuitively, a
naive approach is to replace the first-order gradient in HMC
with the second-order gradient about the negative logarithm
of the target distribution using the quasi-Newton method.
However, we will see that the resulting dynamics leads to
an incorrect stationary distribution. Thus, it is challenging
to incorporate second-order gradient into HMC.

Motivated by the work of Ma, Chen, and Fox (2015), we
construct a skew-symmetry structure in our dynamics via
adding the approximation of the inverse Hessian matrix to
the standard Hamiltonian dynamics. We theoretically prove
that this new dynamics keeps the target distribution invari-
ant. Accordingly, we develop a quasi-Newton Hamiltonian
Monte Carlo (QNHMC) algorithm. In QNHMC, both mo-
mentum and position variables are rescaled into a better
condition using the geometric information estimated via a
quasi-Newton method. Such an algorithm would produce
a better proposal, take a large movement in the extended
Hamiltonian dynamical system and enable a faster conver-
gence rate to the desired distribution, which is verified by
empirical results.



The remainder of the paper is organized as follows. Basic
quasi-Newton and HMC methods are introduced in Sec-
tion 2. We then describe our approach QNHMC in Sec-
tion 3. Related studies are briefly reviewed in Section 4
while empirical results are shown in Section 5. Finally, we
conclude our work in Section 6. All the proofs of theoreti-
cal results are given in Appendix.

2 Background

In this section we describe backgrounds on both quasi-
Newton Approximation and Hamiltonian Monte Carlo.

2.1 Quasi-Newton Approximation

It is well-known that the Hessian matrix describes second-
order curvature of the objective function f : Rd → R. The
time complexity and space complexity for exactly comput-
ing the Hessian matrix are both O(d2), which is compu-
tationally prohibitive for high-dimensional problems. Al-
ternatively, quasi-Newton methods, including the BFGS
method and its variant limited-memory BFGS(L-BFGS),
are widely used (Nocedal and Wright, 2006).

In particular, let θ ∈ Rd be the parameter that needs
to be estimated. Given the previous m estimates
{θk−m+1,θk−m+2, . . . ,θk} of θ and the k-th estimate Bk

of the inverse Hessian matrix, the BFGS updates Bk+1 in
the following way:

Bk+1 = (I− sky
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where I is the identity matrix, sk = θk+1 − θk, and
yk = ∇f(θk+1) − ∇f(θk). It is implemented by storing
the full d×dmatrix Bk. However, in the high-dimensional
scenario (i.e., d is very large), the limited-memory BFGS
is much more efficient. Specifically, in L-BFGS, Bk−m+1

is set as γI for some γ > 0, and {sk−m+1, . . . , sk−1}
and {yk−m+1, . . . ,yk−1} are stored. The involved matrix-
vector product can be computed in linear time O(md) by
using a specially-designed recursive algorithm (Nocedal
and Wright, 2006).

2.2 Hamiltonian Monte Carlo

We now briefly review the Hamiltonian Monte Carlo (Neal,
2011). HMC lies in Metropolis-Hastings (MH) framework.
It can traverse long distances in the parameter space dur-
ing a single transition. The proposals are generated from a
Hamiltonian system by extending the state space via adding
an auxiliary variable called momentum variable, and then
simulating Hamiltonian dynamics to move long distances
along the iso-probability contours in the extended parame-
ter space.

Formally, suppose that θ ∈ Rd is the parameter of interest
and π(θ) is the desired posterior distribution. Let p be the
auxiliary variable which is independent of θ. For simplicity
and generality, p ∈ Rd is always assumed to be a zero-
mean Gaussian with covariance M.

Then a Hamiltonian is defined as the negative log-
probability of the joint distribution p(θ,p) as follows:

H(θ,p) = − log p(θ,p)

= − log π(θ)− log p(p)

= U(θ) +
1

2
pTM−1p + const,

(2)

where U(θ) = − log π(θ) is called the potential function.
In the Hamiltonian system M is called a preconditioning
mass matrix, θ is regarded as a position variable, and p is
called a momentum variable.

Given an initial state (θ0,p0), the state (θ,p) is gener-
ated by deterministic simulation of Hamiltonian dynam-
ics based on the following ordinary differential equation
(ODE):

θ̇ = M−1p,

ṗ = −∇U(θ),
(3)

where the dots denote the derivatives in time. In this paper
we will also use z = (θ,p) ∈ R2d to denote the joint
variable of the position and momentum variables.

The trajectories of θ and p produce proposals to the
Metropolis-Hastings procedure. In particular, given the k-
th estimate of the position variable θk, the standard HMC
runs in the following steps: (i) draw pk ∼ N (0,M); (ii)
compute the proposal(θ?,p?) by simulation from Eq. (3)
using ε-discretization; (iii) compute the error caused by dis-
cretization∇H = H(θk,pk)−H(θ?,p?); (iv) accept new
proposal θ? with probability at min(exp(∇H), 1).

It is worth mentioning that the error is only caused from
the discretization and highly related to the step size ε. If
the discretization error vanishes, that is to say, Eq. (3) is
solved exactly, then Hamiltonian H(θ,p) is conserved ex-
actly and new proposal is always accepted. The details of
HMC can be found in Neal (2011).

In practice, the mainstream integrator is the well-known
leapfrog method in Algorithm 1, which is symplectic and
time-reversible. The error is second-order in the step size
ε, keeping acceptance rate a reasonable value. However,
when the ODE described in Eq. (2) is stiff, the step size
ε is required to be small to maintain a reasonable accep-
tance rate. This will cause the high-correlated series and
reduce the effective sample size. A main reason is that only
first-order gradient is not enough. That is, HMC fails to
make sufficient use of the local geometric information, as
shown by Girolami and Calderhead (2011); Zhang and Sut-



Algorithm 1 Standard Hamiltonian Monte Carlo(HMC)

Input: target posterior distribution π(θ) and potential
function U(θ) = − log π(θ), step size ε, number of
leapfrog L, total number of sample N , burn-in sam-
ples K, start point θ0, mass matrix M

Output: {θK+1,θK+2, . . . ,θN}
1: Iteration counter t = 1.
2: while t < N do
3: Let q = θt.
4: Draw p ∼ N (0,M).
5: Compute the current energy E0 using Eq. (2).
6: First half step: p = p− ε∇U(q)/2
7: for i = 1 : L do
8: q = q + εM−1p
9: if i 6= L then

10: p = p− ε∇U(q)
11: end if
12: end for
13: Last half step: p = p− ε∇U(q)/2
14: Compute the proposed energy E1 using Eq. (2).
15: Draw u ∼ Uniform(0, 1)
16: if u < min{1, exp(E1 − E0)} then
17: Accept the proposal q, i.e., θt+1 = q.
18: else
19: Reject, θt+1 = θt.
20: end if
21: t = t+ 1.
22: end while

ton (2011). We also demonstrate this problem empirically
in Section 5.

3 Methodology

In this section, we first discuss the condition for variants
of Hamiltonian dynamics to reach the correct stationary
distribution and then propose a novel dynamics satisfying
the condition. Accordingly, we develop a quasi-Newton
Hamiltonian Monte Carlo (QNHMC) algorithm.

3.1 A Naive Replacement

Intuitively, the most straightforward approach to apply the
quasi-Newton method on Hamiltonian Monte Carlo is sim-
ply to replace ∇U(θ) in Algorithm 1 by B∇U(θ), where
B is the approximation to the inverse Hessian matrix.
The resulting discrete time system can be viewed as an ε-
discretization of the following continuous ODE:

θ̇ = M−1p,

ṗ = −B(t)∇U(θ),
(4)

where B(t) ∈ Rd×d is positive definite and varies with
time t. For simplicity, we always ignore the time t and as-

sume that B is not the identity matrix, i.e., B = B(t) 6=
I. Now we show that, as given by Corollary 1 below,
p(θ,p) ∝ exp(−H(θ,p)) is no longer the stationary dis-
tribution of the dynamics described in Eq. (4). The follow-
ing theorem shows a stronger result, a necessary condition
for the invariance property, i.e., the dynamics governed by
Eq. (4) can not conserve the entropy of pt with time.

Theorem 1. Let pt(θ,p) be the distribution of (θ,p) at
time t with dynamics described in Eq. (4). Define the
entropy of pt(θ,p) as h(pt) = −

∫
θ,p

f(pt(θ,p))dθdp,
where f(x) = x lnx is defined for measuring entropy. As-
sume pt is a distribution with density and gradient vanish-
ing at infinity and the gradient vanishes faster than 1

ln pt
.

Then, the entropy of pt varies over time.

Intuitively, Theorem 1 is true because the standard Hamil-
tonian dynamics strictly preserve the entropy (Qian, 2012).
The additional B can be seen as a noise, destroying the en-
tropy preservation. This hints the fact that the distribution
pt(z) tends toward far from the target distribution.

Based on Theorem 1, we conclude that the naive modifica-
tion to Hamiltonian dynamics can not keep the target dis-
tribution invariant. That is,

Corollary 1. The distribution of extended system
p(θ,p) ∝ exp(−H(θ,p)) is no longer invariant under
the dynamics described by Eq. (4).

This corollary claims the failure of dynamics governed by
Eq. (4). In what follows, we will consider a general frame-
work which builds the necessary and sufficient condition
for variants of Hamiltonian dynamics to satisfy the invari-
ance of the target distribution. Accordingly, this leads us to
a new dynamics.

3.2 Motivation: A general recipe

In this section, we introduce a general framework for
stochastic gradient MCMC algorithms proposed recently
by Ma, Chen, and Fox (2015). It provides the sufficient
and necessary condition for Hamiltonian systems to reach
the invariant distribution.

Consider the following Stochastic Differential Equation
(SDE) for continuous Markov processes for sampling:

dz = f(z)dt+
√

2D(z)dW (t), (5)

where f(·) : R2d −→ R2d denotes the deterministic drift
and is often related to the gradients of Hamiltonian∇H(z),
W (t) is a 2d-dimensional Wiener process, and D(z) ∈
R2d×2d is a positive semi-definite diffusion matrix. Ob-
viously, not all choices of f(z) and D(z) can yield the sta-
tionary distribution p(θ,q) = p(z) ∝ exp(−H(z)).

Ma, Chen, and Fox (2015) devised a recipe for construct-
ing SDEs with the correct stationary distributions. They



defined f(z) directly in terms of the target distribution:

f(z) = −[D(z) +Q(z)]∇H(z) + Ξ(z),

Ξi(z) =

d∑
j=1

∂

∂zj
(Dij(z) +Qij(z)).

(6)

Here Ξi(·) is the i-th entry of the vector-valued func-
tion Ξ(·) : R2d −→ R2d, and Q(z) ∈ R2d×2d is a
skew-symmetric curl matrix representing the determin-
ing traversing effects seen in the HMC procedure. It
was proved that under certain conditions p(z) is the
unique stationary distribution of the dynamics governed by
Eq. (5) (Ma, Chen, and Fox, 2015).

Theorem 2. p(z) ∝ exp(−H(z)) is a stationary distribu-
tion of the dynamics described in Eq. (5) if f is restricted
to the form of Eq. (6), with D(z) positive semidefinite and
Q(z) skew-symmetric.

Since in this paper we restrict our attention to the determin-
istic dynamics, we can omit the term related to diffusion
partD(z). In this case, the SDE is reduced to an ODE. The
skew-symmetry of Q(z) inspires us to add B into update
of the position variable θ in the dynamics in Eq. (4).

In the next section we will consider skew-symmetric mod-
ification to the Hamiltonian dynamics that achieves the de-
sired p(θ,p) as the invariant distribution of the continuous
Hamiltonian dynamical system.

3.3 Novel Dynamics in skew-symmetric structure

In this section, inspired by the skew-symmetric structure,
we consider a variant on Hamiltonian dynamics as follows:

θ̇ = CM−1p,

ṗ = −C∇U(θ),
(7)

where C ∈ Rd×d is a symmetric positive definite matrix,
independent of θ and p.

Now we show that the new dynamics maintains the desired
distribution as the invariant distribution.

Theorem 3. p(θ,p) ∝ exp(−H(θ,p)) is the unique sta-
tionary distribution of the dynamics governed by Eq. (7).

Then it is easy to prove the entropy preservation of pro-
posed dynamics directly using the intermediate results in
Theorem 3.

Corollary 2. Let pt(θ,p) be the distribution of (θ,p) at
time t with dynamics described in Eq. (7). Under almost
the same condition with Theorem 1, i.e., the entropy of
pt(θ,p) is defined as h(pt) = −

∫
θ,p

f(pt(θ,p))dθdp,
where f(x) = x lnx. Assume pt is an arbitrary distribu-
tion with density and gradient vanishing at infinity. Then,
the entropy of pt is strictly conserved with time.

Algorithm 2 Quasi-Newton HMC (QNHMC)

Input: target distribution π(θ) and potential function
U(θ) = − log π(θ), step size ε, number of Leapfrog
L, total number of sample N , burn-in samples K, start
point θ0, mass matrix M, approximation of Hessian
Matrix B = I.

Output: θK+1,θK+2, · · · ,θN .
1: Iteration counter t = 1.
2: while t < N do
3: Let q = θt and C = B.
4: Draw p ∼ N (0,M).
5: Compute the current energy E0 using Eq. (2).
6: First half step: p = p− εC∇U(q)/2.
7: Update B using Eq. (1).
8: for i = 1 : L do
9: q = q + εCM−1p.

10: if i 6= L then
11: p = p− εC∇U(q).
12: Update B using Eq. (1).
13: end if
14: end for
15: Last half step: p = p− εC∇U(q)/2
16: Update B using Eq. (1).
17: Compute the proposed energy E1 using Eq. (2).
18: Draw u ∼ Uniform(0, 1).
19: if u < min{1, exp(E1 − E0)} then
20: Accept the proposal q, i.e., θt+1 = q.
21: else
22: Reject, θt+1 = θt. B = C.
23: end if
24: t = t+ 1.
25: end while

In summary, we have shown that the dynamics given by
Eq. (7) owns the invariance property. Furthermore, it is
concise. When C = I, it reduces to Hamiltonian dynamics.

3.4 Quasi-Newton Hamiltonian Monte Carlo

In the previous section we mainly focus on the invariance
property of the proposed dynamics given in Eq. (7), which
in essence is a continuous ODE. However, in practice, we
need a numerical solution to the continuous ODE in Eq. (7).
Here, the discretization step employ leapfrog methods, in-
heriting from the standard HMC (Neal, 2011). In particu-
lar, the resulting Quasi-Newton Hamiltonian Monte Carlo
(QNHMC) algorithm is shown in Algorithm 2.

It is worth noting that in Algorithm 2 the approximation
B varies with iteration counter. In contrast, to keep the
invariance property of the dynamics in Eq. (7), in each pro-
posal (Step 3-15), B is kept as a constant C. The update
to B is only done when the proposal procedure ends and
the proposal is accepted. The following theorem shows the
correctness of Algorithm 2.



Theorem 4. π(θ) is maintained as an invariant distribu-
tion for the whole chain produced by Algorithm 2.

To gain some intuitions about the proposed QNHMC algo-
rithm in physical interpretation, consider the well-known
hockey puck instance widely used in the Hamiltonian dy-
namical system (Leimkuhler and Reich, 2004), where we
can imagine the puck on an uneven surface. Here, B repre-
sents the approximation to the local geometric information.
In HMC, when the local geometry is stiff, movements con-
trolled by momentum p are always useless. By multiply-
ing the matrix B (C), the momentum variable and position
variable are rescaled into the case where each dimension
has a similar scale. This makes the movement in the ex-
tended Hamiltonian system more efficient. Empirically, it
can traverse a large step in the state space. In the Bayesian
scenario, this new dynamics produces a better proposal and
less-autocorrelated series.

3.5 Computational Complexity

Two strategies (BFGS/L-BFGS) are used in estimating the
matrix B according to the dimension of the parameter.
When the dimension of the parameter d is high, the L-
BFGS is adopted. In this case, O(md) space complexity
is needed. Moreover, since only matrix-vector product is
required, the product Bv (Cv) can be computed in linear
time O(md). It is worth noting that unlike in Algorithm 2,
no need to update B in each leapfrog step when adopting L-
BFGS. Instead, we choose to store 2m d-dimensional vec-
tors as mentioned in Section 2. Only when the proposal is
accepted, it is required to update B.

On the other hand, when d is not high, BFGS is chosen.
A d × d matrix needs to be stored so the complexity is
O(d2). Each updating step requires O(d) time without
matrix-vector or matrix-matrix product.

In this paper, we mainly compare our QNHMC approach
with the standard HMC (Neal, 2011). The gradient com-
putation of the negative log-posterior ∇U(θ) has already
been done in the standard HMC in each leapfrog step. And,
in practice, the gradient computation always contains ex-
pensive computations such as matrix-matrix/matrix-vector
product. The size of matrix depends on both the dimension
of the parameter and the number of the training instances.
Our QNHMC algorithm can make use of the byproduct of
leapfrog step, e.g., sk and yk in Eq. (1). Thus, the gradi-
ent computation is always dominant in computational time,
which means that HMC and QNHMC cost the same order
of magnitude running time in each proposal. Considering
the larger step that QNHMC takes owing to more sufficient
use of geometric information, QNHMC converges to the
desired distribution faster than the standard HMC, which
will be further validated by our empirical results.

4 Related Studies

In recent years, many approaches have been pro-
posed to scale up Bayesian methods in machine learn-
ing community. As is well-known, gradient infor-
mation of log-posterior distribution is widely used in
Langevin/Hamiltonian dynamics. Among these methods,
one large category is stochastic gradient Markov Chain
Monte Carlo methods. The framework is to estimate
the gradient from small mini-batches of observations in-
stead of the whole dataset to cut the computational budget.
The landmark of this kind of approaches is proposed by
Welling and Teh (2011), which applied stochastic gradi-
ent on Langevin dynamics. Subsequently, a series of algo-
rithms are developed to complete this framework (Ahn, Ko-
rattikara, and Welling, 2012; Patterson and Teh, 2013; Ahn,
Shahbaba, and Welling, 2014; Chen, Fox, and Guestrin,
2014; Ding et al., 2014; Ma, Chen, and Fox, 2015). For
instance, Chen, Fox, and Guestrin (2014) adapted stochas-
tic gradient on Hamiltonian Monte Carlo (SGHMC) while
Ding et al. (2014) devised a SGNHT algorithm by intro-
ducing a thermostat variable to make SGHMC more robust.
Ma, Chen, and Fox (2015) developed a complete recipe for
all stochastic gradient based MCMC approaches. There
are some recent works (Bardenet, Doucet, and Holmes,
2014; Korattikara, Chen, and Welling, 2013; Maclaurin and
Adams, 2015), attempting to perform Metropolis-Hastings
rejection procedure using partial observations instead of
whole dataset. These approaches mainly accelerate sam-
pling procedure via a stochastic method applied on likeli-
hood of data observations.

Another class of methods aim at sampler itself (Girolami
and Calderhead, 2011; Zhang and Sutton, 2011; Calder-
head and Sustik, 2012; Patterson and Teh, 2013; Wang,
Mohamed, and Nando, 2013; Chao et al., 2015). Most of
them are closely related to geometry. Concretely, they aim
at finding the local geometric structure of posterior so that
the random-walk behaviour in proposal can be significantly
suppressed. Such algorithms allow a larger step size with-
out loss of acceptance rate and make the sampling efficient.
The representative work is Riemann Manifold Hamiltonian
Monte Carlo proposed by Girolami and Calderhead (2011),
which employed the high-order of geometric information
about the local point. Chao et al. (2015) proposed an expo-
nential integration to solve the high-oscillatory component
of posterior more accurately than the integration used in the
standard HMC method.

It is worth noting that Zhang and Sutton (2011) also pro-
posed a quasi-Newton based Hamiltonian Monte Carlo
method called HMC-BFGS. Different from our QNHMC,
HMC-BFGS uses the geometric information in covariance
of zero-mean proposal. In contrast, our QNHMC makes
use of second-order information in scaling both momentum
and position variables. Furthermore, HMC-BFGS devises



an extended chain. The specially-designed structure may
sacrifice the convergence rate and leads to a poor estimate
of Hessian, validated by our empirical evaluations.

5 Empirical Evaluation

In this section, we empirically analyze the quasi-Newton
HMC. We mainly compare our quasi-Newton HMC
(QNHMC) with the standard HMC (Neal, 2011) and HMC-
BFGS (Zhang and Sutton, 2011) in both efficiency and ef-
fectiveness. In all cases, QNHMC outperforms HMC and
HMC-BFGS under the same settings of hyperparameters in
both burn-in time and effective sample size.

5.1 Simulated data

First, we evaluate the scalability of our model on a high-
dimensional zero-mean Gaussian distribution. The tar-
get distribution is high-dimensional Gaussian distribution
N (0,Σ). The covariance matrix is Σ = 11T + 4I ∈
Rd×d, where 1 and 0 are the all-1 and all-0 vectors of d-
dimension, respectively. This d-dimensional distribution is
highly correlated in one direction. Hence, it is a challeng-
ing task for random-walk based sampler, such as MCMC.

The main evaluating metrics are as follows:

• Autocorrelation. Since the desired distribution is
highly correlated, when computing the autocorrelation
of samples, the samples are projected onto the direc-
tion of its largest eigenvalue (x = 1). And the max
number of lag m is set to 500. ρk is the autocorrela-
tion at lag k.

• Effective sample size (ESS) is the common measure-
ment, which summaries the amount of autocorrelation
across different lags over all dimensions. ESS is for-
mally defined as follows

ESS =
n

1 + 2
m∑
k=1

ρk

,

where n is the original sample size, m is the maximal
number of lag and determined empirically. In this sce-
nario, m = 500. Notice that ESS per second is also a
metric to measure the efficiency of sampler.

• Convergence diagnostics. To compare the conver-
gence rate fairly, we choose the starting position far
away from the mode of the target distribution. Notice
that the starting positions are same for all the sam-
plers. Thus the chain should be run long enough to
“forget” the starting position. This is the so-called
burn-in period. Determining the length of burn-in
period is critical. In this paper, we choose to mon-
itor the probability of the samples, a mainstream

method in convergence diagnostics (Gilks, Richard-
son, and Spiegelhalter, 1996). In particular, by ob-
serving the negative log-probability of samples x (i.e.,
(x−µ)TΣ(x−µ), ignoring the normalizing constant),
we can easily find that how long steps the chain takes
to reach the highest posterior density (HPD) region
and ends the burn-in period.

In this experiment, for fair comparison among these three
methods, we adopt the same setting of the hyperparameters
involved. In particular, we use the step size ε = 0.01 and
the number of leaps L = 10, the dimension of the problem
d = 100. We draw 100K samples for each sampler. For
HMC-BFGS, we need to choose an ensemble of K chains.
If K is too large, there will be numerical unstability about
the BFGS methods and the performance will degrade dras-
tically. Here, K is chosen to be 5, following the setting of
Zhang and Sutton (2011). The starting positions for these
methods are the same, a randomly-generated point distant
from the HPD region.

As illustrated in Figure 1, the chain of QNHMC only re-
quires hundreds of samplings to end the burn-in period and
reach the HPD region while the rest two algorithms need far
more samplings. Hence, one advantage of QNHMC is that
it can converge to the HDP region quicker than the other
two algorithms.

Though QNHMC only requires hundreds of burn-in sam-
ples here, for fair comparison, when computing ESS and
autocorrelation, we only use the last 50K samples for all the
methods. The results are shown in Table 1. We observe that
QNHMC can not only produce more “independent” series
than the other methods, but also obtain the most effective
sample size among the three methods under the same set-
ting and draw samples from the desired distribution most
efficiently.
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Figure 1: Performance of different samplers on simulated
data: monitoring the convergence to HPD: negative log-
probability of samples ((x− µ)TΣ(x− µ)) v.s. iteration



Table 1: Performance of different samplers on artificial data, as measured by sum of autocorrelation coefficient, burn-in
time, Effective Sampler Size(ESS) and ESS per second. For the first two metric, lower is better while for the other two
metric, higher is better.

Method
m∑
k=1

|ρk| burn-in time(second) ESS ESS per second

HMC 98.27 81 253 7.22
HMC-BFGS 49.74 47 497 9.65
QN-HMC 2.65 0.93 7936 93.36

Table 2: Performance of different methods on Bayesian Lo-
gistic Regression, as measured by sum of autocorrelation
coefficient, burn-in time(in seconds) for sampling based
methods, Effective Sampler Size(ESS) and ESS per sec-
ond. GD is the abbreviation for gradient descent.

Method burn-in time ESS per second Error
HMC 64 0.286 0.0493
HMC-BFGS 36 0.418 0.0501
QN-HMC 17 1.30 0.0496
GD − − 0.0578

5.2 Bayesian Logistic Regression

Next, we evaluate our method on a well-known handwrit-
ten digits classification task using the MNIST dataset1. In
this task, we aim at discriminate digits “7” and “9”. The
number of training instances are 6265 and 5949 for “7”
and “9”, respectively while the number of test instances are
1028 and 1009 for “7” and “9”, respectively.

We test four methods: gradient descent (GD), HMC, HM-
CBFGS and our QNHMC. For GD, we employ an `2 regu-
larizer trial several time to choose the near-optimal hyper-
parameter. And in each iteration, we use all the training
instances. For the sampling-based approaches, we take a
fully Bayesian approach and place a weakly informative
Gaussian prior on the weight, following Zhang and Sutton
(2011); Girolami and Calderhead (2011).

The results for the sampling methods are shown in Table
2. The result with GD is provided as a baseline. We set
the number of leapfrog L to 5 for all sampling based ap-
proaches. The step size ε is set to 0.1. Dimension d = 784
here, and L-BFGS method are used, where m is set to be
7. We can see that the Bayesian approaches are superior
to the optimization based methods. Among the Bayesian
approaches, QNHMC requires less burn-in time than the
others and converges to a low test error faster. This shows
its advantage over the other two HMC-related methods.

1http://yann.lecun.com/exdb/mnist/

5.3 Online Bayesian Matrix Factorization

Collaborative filtering is a popular theme. The target is to
predict users’ preference over a set of items, e.g., movies,
music and produce recommendation. Owing to the sparsity
in the ratings matrix (users versus items) in recommenda-
tion systems, over-fitting is a severe issue. Hence Bayesian
approaches provide a natural solution. The most famous
Bayesian algorithm for collaborative filtering is the online
probabilistic matrix factorization proposed in Salakhutdi-
nov and Mnih (2008).

In the experiment, the Root-Mean-Square Error (RMSE) is
used to evaluate the performance of the three algorithms. It
is defined as

RMSE = ‖PΩtest(X)− PΩtest(T)‖F , (8)

where Ωtest represents the index of all testing entries and
|Ωtest| is the cardinality of Ωtest, and X is the solution from
the algorithms and PΩtest(T) is corresponding partially ob-
served labels, ‖X‖F represents the Frobenius norm of the
matrix X. PΩ(X) represent the entry-wise projection of X
onto Ω, defined by:

{PΩ(X)}ij =

{
Xij , (i, j) ∈ Ω

0, otherwise.

We conduct the experiment in online Bayesian PMF on the
Movielens-1M datasets2. The dataset contains about 1 mil-
lion ratings of 3,952 movies by 6,040 users. The number of
latent dimensions is set to 10. Other settings follow from
the demo code given by Salakhutdinov and Mnih (2008).
For HMC-related methods, step size ε is set to 0.01, length
of leapfrog L = 10.

Performances of the different methods are shown in Table
3. The sampling-based methods (standard HMC, QNHMC
and HMC-BFGS) provide better prediction results than the
optimization-based methods (MAP), showing an advan-
tage of Bayesian inference in this scenario, thus validat-
ing the need for scalable and efficient Bayesian algorithm
such as QNHMC. In this experiment, prediction results for
QNHMC, HMC and HMCBFGS are comparable. This
experiment shows that QNHMC converges faster than the

2http://grouplens.org/datasets/movielens/



Table 3: Performance of different methods on Online
Bayesian Matrix Factorization in terms of RMSE and run-
ning time. For RMSE, lower is better.

Method RMSE Running time(second)
MAP 0.8701 27.67
HMC 0.8607 202.5
QNHMC 0.8628 108.34
HMC-BFGS 0.8618 179.23

other two HMC-related approaches and can be seen as an
effective choice for online Bayesian PMF.

6 Conclusion

In this paper we have proposed a novel quasi-Newton
Hamiltonian Monte Carlo (QNHMC) algorithm to acceler-
ate the Hamiltonian Monte Carlo sampler. Our theoretical
analysis has guaranteed that the desired distribution is the
unique stationary distribution under the proposed dynam-
ics. The empirical results have verified the efficiency and
effectiveness of our QNHMC on both simulated and prac-
tical datasets. A natural next step is to explore marrying
stochastic gradient with QNHMC. More broadly, we be-
lieve that the unification of efficient optimization and sam-
pling techniques, such as those described herein, will en-
able a significant scaling of Bayesian approaches.

Acknowledgements

This work has been supported by the National Natural Sci-
ence Foundation of China (No. 61572017), Natural Sci-
ence Foundation of Shanghai City (No. 15ZR1424200),
and Microsoft Research Asia Collaborative Research
Award.

Appendix

A: Proof of Theorem 1

Proof. Define

dz = d

(
θ
p

)
=

(
M−1p
−B∇U(θ)

)
dt = G(z)dt (9)

where G(·) : R2d −→ R2d is a function and the i-th compo-
nent of G(z) is denoted by Gi(z). According to the defi-
nition of FPE (Fokker-Planck Equation) (Kadanoff, 2000),
the corresponding FPE is given by

∂tpt(θ,p) = ∇T [G(z)pt(θ,p)] (10)

The entropy at time t is defined by integrating out the joint
variable z, as follows:

h(pt) = −
∫
z

f(pt(z))dz (11)

The evolution of the entropy is governed by

∂th(pt(z)) = −∂t
∫
z

f(pt(z))dz

= −
∫
z

f ′(pt(z))∂tpt(z)dz

= −
∫
z

f ′(pt(z))∇T [G(z)pt(z)]dz

= −
∫
z

f ′(pt(z))∇T [G(z)]pt(z)dz

−
∫
z

f ′(pt(z))(∇pt(z))T [G(z)]dz

(12)

where the last equality uses the fact that

∇T [G(z)pt(θ,p)]

= pt(θ,p)∇T [G(z)] + (∇pt(θ,p))T [G(z)]
(13)

The second term on the RHS of Equation 12 can be simpli-
fied into following form:

−
∫
z

f ′(pt(z))(∇pt(z))T [G(z)]dz

= −
∫
z

(∇f(pt(z)))T [G(z)]dz

=

∫
z

f(pt(z))∇T [G(z)]dz = 0

(14)

where the second equality is given by integrations by parts,
using the fact that∫

z

∇T [f(pt(z))G(z)]dz = 0 (15)

which is based on the assumption that the probability den-
sity vanishes at infinity and f(x) −→ 0 as x −→ 0 such that
f(pt(z))[G(z)] −→ 0 as z −→∞.

Hence the entropy of pt varies with rate of

∂th(pt(z)) = −
∫
z

f
′
(pt(z))∇T [G(z)]pt(z)dz

= −
∫
z

f
′
(pt(z))(pTM−T (B− I)∇U(θ))pt(z)dz

(16)
This is not equal to zero for B obviously.

B: Proof of Theorem 3

Proof. Using FPE (Kadanoff, 2000), Eq. (7) can be written
in the following decomposed form:

dz = d

(
θ
p

)
=

(
0 −C
C 0

)(
∇U(θ)
M−1p

)
dt

=

(
−CM−1p
C∇U(θ)

)
dt

= F(z)dt.

(17)



The distribution evolution under this dynamical system is
governed by a Fokker-Planck Equation as following:

∂tpt(z)

= −∇T [F (z)pt(z)]

=

2d∑
i=1

∂zi [Fi(z)pt(z)]

=

d∑
i=1

∂θi [fi(z)p(z)] +

d∑
j=1

∂pj
[gj(z)p(z)]

=

d∑
i=1

[∂θip(z)]fi(z) +

d∑
j=1

[∂pjp(z)]gj(z)

=

d∑
i=1

p(z)[−∇U(θ)]ifi(z) +

d∑
j=1

p(z)[M−1p]jgj(z)

= p(z)(∇U(θ))T (−CM−1p) + p(z)(M−1p)T (C∇U(θ))

= p(z)[(∇U(θ))T (−CM−1p) + (∇U(θ))TCT (M−1p)]

= 0
(18)

where f(·) and g(·) are functions defined as: f(·) : R2d −→
Rd, g(·) : R2d −→ Rd. f(z) = f(p,θ) = −CM−1p and
g(z) = g(p,θ) = C∇U(θ). It satisfy that

F (z) =

(
−CM−1p
C∇U(θ)

)
=

(
f(z)
g(z)

)
(19)

fi(z) and gj(z) are the i-th entry and j-th entry of f(z) and
g(z) respectively.

The fourth equality follows from the fact that function f(z)
only depend on p while function g(z) only depend on θ.
Hence, following happens.

∂θi
fi = 0

∂pi
gi = 0

(20)

Since p(z) = π(θ,p) = exp(−U(θ)− 1/2pTM−1p), we
expand the partial derivation as following:

∂θip(z) = p(z)[−∇U(θ)]i

∂pi
p(z) = p(z)[M−1p]i

(21)

Hence the fifth equality satisfies.

The last equality is given by the fact that C is symmet-
ric, i.e., CT = C. By calculating ∂tpt(z) = 0, we
show that the distribution pt does not vary with time, i.e.,
p(z) = π(θ,p) is invariant under the dynamics described
in Equation 7.

C: Proof of Corollary 2

Proof. With the entropy defined in Eq. (11) and compact
form of dynamics defined in Eq. (17), The evolution of the

entropy is governed by

∂th(pt(z)) = ∂t

∫
z

f(pt(z))dz

= −
∫
z

f
′
(pt(z))∂tpt(z)dz

= −
∫
z

f
′
(pt(z))∇T [F (z)pt(z)]dz

= 0,

(22)

where the first two equalities can be referred from part of
Eq. (12) and the last equality follows from the conclusion
in Eq. (18).

D: Proof of Theorem 4

The idea behind the correctness of Algorithm 2 is that The-
orem 3 guarantees the detailed balance condition for any
neighboring samples (e.g., θi−1 and θi) while Theorem 4
strengthen this results on the whole chain.

Proof. Firstly, we define {θi}ni=1, the chain generated by
Algorithm 2. At i-th iteration, B is denoted by Bi. For ev-
ery i, the approximation to inverse Hessian Bi is symmet-
ric positive definite (Nocedal and Wright, 2006). As seen
from Algorithm 2, in i-th proposal (Step 3-15), Bi is fixed.
Moreover, according to Theorem 3 and ε-discretization,
we obtain that the detailed balance condition hold for any
neighboring samples θi−1 and θi, i.e.,

π(θi−1)Ti(θi−1 −→ θi) = π(θi)Ti(θi −→ θi−1) (23)

where Ti(· −→ ·) is the transition kernel at i-th proposal.

Integrating out θi−1 on both sides, we obtain that

π(θi) =

∫
π(θi)Ti(θi −→ θi−1)dθi−1

=

∫
π(θi−1)Ti(θi−1 −→ θi)dθi−1

(24)

That is, distribution π is a stationary distribution with a sin-
gle transition kernel Ti, i.e.,

Ti(π) = π (25)

holds for every i.

Thus,
TnTn−1...T1(π) = π (26)

Proved.
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