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ABSTRACT
In recent years, therapeutic antibodies have become one of the

fastest-growing classes of drugs and have been approved for the

treatment of a wide range of indications, from cancer to autoim-

mune diseases. Complementarity-determining regions (CDRs) are

part of the variable chains in antibodies and determine specific

antibody-antigen binding. Some explorations use in silico methods

to design antibody CDR loops. However, the existing methods faced

the challenges of maintaining the specific geometry shape of the

CDR loops. This paper proposes aConstrained EnergyModel (CEM) to
address this issue. Specifically, we design a constrained manifold to

characterize the geometry constraints of the CDR loops. Thenwe de-

sign the energy model in the constrained manifold and only depict

the energy landscape of the manifold instead of the whole space in

the vanilla energymodel. The geometry shape of the generated CDR

loops is automatically preserved. Theoretical analysis shows that

learning on the constrained manifold requires less sample complex-

ity than the unconstrained method. CEM’s superiority is validated

via thorough empirical studies, achieving consistent and significant

improvement with up to 33.4% relative reduction in terms of 3D

geometry error (Root Mean Square Deviation, RMSD) and 8.4% rel-

ative reduction in terms of amino acid sequence metric (perplexity)

compared to the best baseline method. The code is publicly available

at https://github.com/futianfan/energy_model4antibody_design.
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1 INTRODUCTION
Antibody engineering has dramatically evolved since muromonab-

CD3 (treating acute transplant rejection), the first therapeutic anti-

body, was approved for medical use by the United States Food and

Drug Administration (US FDA) in 1986 [29]. As of December 2019,

79 therapeutic antibodies have been approved by the US FDA with

significant growth potential. Compared with small-molecule drugs,

the primary advantage of antibody drugs is their fewer adverse

effects due to their high specificity to the antigen. Therapeutic anti-

bodies have become the predominant class of new drugs developed

in recent years for treating various human diseases, including many

cancers, autoimmune, metabolic, and infectious diseases. Over the

past five years, therapeutic antibodies have become the best-selling

drugs
1
in the pharmaceutical market [33]. The global therapeutic

antibody market was valued at approximately $144 billion in 2020

and is expected to reach $300 billion by the end of 2025 [15].

In terms of design methodology, most of the affinity and speci-

ficity of antibodies is modulated by a set of binding loops called

the Complementarity Determining Regions (CDRs) found on the

variable domain of antibody. There is a high demand to develop in
silico methods for antibody design, especially CDR loop design [33].

However, current antibody discovery and development procedures

heavily rely on a mixture of high throughput screening and experi-

mental heuristics, which can be costly and laborious.

Recently machine learning methods have been proposed in de-

signing novel antibodies [1, 21, 26, 42]. Most of these methods

formulate the antibody design problem as either amino acid se-

quence design or 3D graph design tasks. However, several chal-

lenges remain: (1) Antibody CDR loops have specific geometry

shape [35, 48, 55]. However, most of the existing antibody design

methods do not consider it, which may lead to the generation of

invalid CDR loops. (2) Most of the existing deep generative models

do not leverage the external knowledge and are purely learning

from data, impeding their ability to incorporate constraints. To ad-

dress these issues, in this paper, we proposed Constrained Energy

Model that takes geometry constraints into account during the

generation of 3D CDR loops. We summarize the main contributions

of the paper as follows. (1) We formulate antibody CDR design as a

constrained 3D generation task and define a constrained manifold
to represent all the geometric valid CDR loops (Sec 3.1). (2) We

design a Constrained Energy Model that learns the 3D structure on

the defined manifold (Sec 3.3). (3) Theoretical analysis shows the

sample sizes required for constrained learning on the manifold is

about two-thirds of the sample sizes required for unconstrained

learning (Sec 3.4). (4) Experimental results confirm the effectiveness

1
The top-selling drug worldwide is Humira (antibody), which is used to treat arthritis,

plaque psoriasis, ankylosing spondylitis, Crohn’s disease, and ulcerative colitis.

https://github.com/futianfan/energy_model4antibody_design
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of the proposed method, which obtains up to 33.4% relative reduc-

tion in 3D geometry error (Root Mean Square Deviation, RMSD)

and 8.4% relative improvement in terms of amino acid sequence

metric (perplexity) (Sec 4).

2 RELATEDWORK
2.1 Deep Generative Model
The basic idea of deep generative models (DGMs) is to learn the

data likelihood with deep learning models. We briefly review sev-

eral commonly used DGMs, including Variational Auto-Encoder

(VAE), Generative Adversarial Network (GAN), flow model (a.k.a.

normalizing flow), auto-regressive model (AR), energy model (a.k.a.

energy based model, EBM) [9]. Also, we analyze the benefit of the

energymodel and whywe choose the energymodel for 3D antibody

CDR loop design in this paper.

Specifically, Variational Auto-Encoder (VAE) [24] estimates a

lower bound of data distribution (i.e., evidence lower bound (ELBO)

in variational inference) instead of directly optimizing data distribu-

tion. Generative Adversarial Network (GAN) [16] circumvents the

optimization of the likelihood directly; instead, it separates the real

data from generated data and recast the generation problem into

a binary classification problem. Flow model (or normalizing flow

model) can reconstruct input data exactly by designing an invertible

and deterministic mapping. Thus, the exact likelihood is optimized

directly (instead of optimizing a surrogate, e.g., VAE) [41, 46, 54].

Auto-regressive (AR) model generates variables sequentially, i.e.,

generating the current variable based on all the previous variables.

For example, [30] designed an autoregressive 3D graph neural net-

work to design small-molecule conformation conditioned on the

pocket conformation of the target protein. It generates a single

variable (an atom) within a single step based on the conditional

distribution. However, most of these deep generative models fail

to preserve the intrinsic property of the underlying graph, e.g.,

translation- and rotation-invariance for 3D graph or permutation

invariance for 2D graph. It would yield different likelihoods for

different formats of the same underlying graph and impede the

learning efficiency [27, 43].

On the other hand, the energy model (a.k.a. energy based model,

EBM) defines an unnormalized probability distribution over the

data and assigns lower energies to the data points close to the real

data than others data points [6, 13, 17, 27]. The energy models

bypass the need to reconstruct 3D graph structure explicitly. Be-

cause the energy measure is scalar and differentiable with respect

to the data points, energy models can back-propagate the gradi-

ent to update the data points directly. The basic idea is similar to

the differentiable learning in the context of molecular optimiza-

tion [13]. In the context of 3D graphs, we select a translation- and

rotation-invariant graph neural network as the parameterized en-

ergy function to represent the data. As a result, the translation- and

rotation-invariances are naturally preserved (will be discussed in

Sec 3.3).

In addition, most of the existing DGMs are learning purely from

data and are hard to incorporate constraints. To address this issue,

we propose a Constrained Energy Model (CEM). Different from the

vanilla (unconstrained) energy model, CEM enables learning energy

model while maintaining the constraints at the same time.

2.2 Protein/Antibody Design
There are two fundamental tasks in protein/antibody design. (a) One

is graph conditioned protein design, whose objective is to design an

amino acid sequence that can fold into the input 3D structure. (b)

Another is de novo protein/antibody design, whose objective is to

design protein (its amino acid sequence or/and the corresponding

3D structure) from scratch. Specifically, for (a) graph conditioned

protein design, conditioned on the input 3D graph structure (the

backbone), the goal is to recover the amino acid sequence. Most of

the existing methods are based on deep generative models (DGMs)

by learning a mapping from a 3D graph structure to an amino acid

and generating a single amino acid at a time. Many kinds of neural

network models were leveraged/designed to learn the mapping,

e.g., structured transformer [20], three-dimensional convolutional

neural network (3DCNN) [37, 56], graph convolutional network

(GCN) [49], joint sequence-folding embedding model [5]. For (b)

de novo protein/antibody design are usually cast into a sequence

generation problem or 3D graph generation problem. Existing meth-

ods include variational autoencoder (VAE) based methods [7, 47]

and generative adversarial network (GAN) based methods [23, 40].

For antibody design, [36] combines CDR canonical structures and

iteratively redesign their positions; [26] designed a neural network

ensemble to backpropagate the gradient to update the amino acid

sequence in continuous space; [1, 42] leverage Long Short Term

Memory (LSTM) to generate amino acid sequences; [21] proposed

an iterative refinement graph neural network to jointly design 3D

graph structures and amino acid sequences. However, almost all

of these methods learn directly from data and omit the geometry

constraints in the generation process.

3 METHOD
Overview. Firstly, Sec 3.1 formulates the problem of antibody CDR

loop design. In particular, we define the constrained manifoldM
to characterize the geometry constraints. Next, Sec 3.2 describes

the vanilla (unconstrained) energy model as background. Then

we elaborate the Constrained Energy Model (CEM) in Sec 3.3, i.e.,

learning energy model on the constrained manifoldM, including

the formulation, neural architecture of energy function, learning,

and inference procedure. Finally, Sec 3.4 analyzes the theoretical

properties of the proposed method and finds that learning on the

constrained manifold takes less sample complexity than an uncon-

strained model. We list the mathematical notations in Table 1.

3.1 Problem Formulation
This section introduces the de novo antibody CDR loop generation

problem. We start with definitions of some basic data structures.

Definition 1 (Amino acid). Amino acids are the basic building

blocks of proteins. Amino acids are small organic molecules that

consist of an 𝛼 (central) carbon atom linked to an amino group, a

carboxyl group, a hydrogen atom, and a variable component called

a side chain. In proteins such as enzymes antibodies, the long chain

of amino acids is linked together by peptide bonds and is folded

into a three-dimensional functional shape or tertiary structure.

Following [20], we take the coordinate of 𝛼 atom as the coordinate

of the amino acid. The set of amino acids is denoted V , which

contains 20 natural amino acids. Thus, we have |V| = 20. Frequent
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Table 1: Mathematical notations and explanations.

Notations Explanations

V vocabulary set of all the amino acids.

a ∈ 𝑅 |V| categorical distribution of an amino acid, Definition 1

a = softmax(â) (Eq. 1) or a is one-hot vector

a𝑖 ∈ 𝑅 |V|
categorical distribution of 𝑖-th amino acid

(a) 𝑗 𝑗-th element in a
A set of amino acids’ vectors, A = [a1, · · · , a𝑁 ]
𝑁 number of amino acids in CDR loop.

x𝑖 ∈ 𝑅3
coordinate of 𝑖-th amino acid

X set of coordinates, X = [x1, · · · , x𝑁 ]
Y CDR loop, Y = (A, X)

^, 𝜖1, 𝜖2 hyperparameter of constraints, Eq. (3), (4)

M the constrained manifold, Definition 4

𝐸\ energy function, Eq. 9

𝑃\ probability distribution of energy model, Eq. 9

𝑃
data

real data distribution, Eq. 7

Y (+)
positive samples (real CDR loop).

Y (−)
hallucinated samples (a.k.a. negative samples).

∥𝑧 ∥ 𝑙2 norm of the vector 𝑧

B ∈ 𝑅 |V|×𝑑
embedding matrix of all the amino acids

𝑑 hidden dimension of EGNN.

𝐿 Number of layers in EGNN.

v(𝑙 )
𝑖

message vector of node 𝑖 at 𝑙-th layer

w(𝑙 )
𝑖 𝑗

message vector of edge from 𝑖 to 𝑗 at 𝑙-th layer

h(𝑙 )
𝑖

i-th node’s embedding at 𝑙-th layer

x(𝑙 )
𝑖

i-th node’s position embedding at 𝑙-th layer

𝜙𝑒/𝜙ℎ/𝜙𝑥 MLPs in EGNN

RM (X) retraction operation, Definition 5

amino acids contain histidine, isoleucine, leucine, lysine, etc. To

represent the amino acid’s categorical distribution (all elements are

non-negative, sum of all elements are 1), we use a |V|-dimensional

vector a ∈ 𝑅 |V |
. Positive and hallucinated samples have different

amino acid representation. Positive and hallucinated samples would

be elaborated in Sec 3.2.

(A) amino acid in positive samples (fixed): we directly let a to

be a one-hot vector to represent the category of amino acid.

(B) amino acid in hallucinated samples (will be updated): to
guarantee it is a valid categorical distribution, i.e., the sum of all the

elements equals to 1, we use another vector â ∈ 𝑅 |V |
, normalize â

using softmax function,

a = softmax(̂a), a ∈ 𝑅
|V |
+ , (1)

where the 𝑗-th element of a is (a) 𝑗 = exp (̂a) 𝑗/
(∑ |V |

𝑗 ′=1
exp (̂a) 𝑗 ′

)
.

When updating hallucinated samples, we back-propagate gradient

from neural network to update â (since a is differentiable w.r.t. â).

Definition 2 (Protein/Antibody). Proteins consist of one or more

chains of amino acids called polypeptides [14, 33]. The sequences
of the amino acid chain cause the polypeptide and are folded into a

three-dimensional (3D) functional shape, a.k.a. tertiary structure.

An antibody is a special kind of protein that is symmetric and Y-

shaped. As illustrated in Fig 1, each half of the symmetric unit has

two chains: a heavy chain (H) and a light (L) chain.

The majority of the affinity and specificity of antibodies is mod-

ulated by a set of binding loops called the Complementarity De-

termining Regions (CDRs) found on the variable domain of each

of the two chains. CDR is complicated to model computationally,

causing a significant hurdle for in silico development of antibody

biotherapeutics.

Figure 1: Data representation. An antibody is a special kind of
proteinwith a symmetric Y shape, each half of the symmetric
unit has two chains: a heavy chain (H) and a light chain (L).
In total, there are four chains, two identical H/L chains. The
majority of the binding affinity (to specific antigen) is modu-
lated by a set of binding loops called the Complementarity
Determining Regions (CDRs) found on the variable domain
of each of the H and L chains. There are 6 CDR loops on each
half of the antibody, L1, L2, L3 on the light chain, and H1,
H2, H3 on the heavy chain. We show an example of the H3
loop of the antibody with protein data bank (PDB) ID 5iwl.
The CDR loop in the 3D geometry graph contains six amino
acids (SGAVGY) and their 3D coordinates.

Definition 3 (CDR loops). In the Y-shaped antibody, there are

six CDR loops, L1, L2, L3 loops on the light chain and H1, H2, H3

loops on the heavy chain [31, 45]. A 3D CDR loop (H1, H2, or H3)

can be characterized by a sequence of amino acids and their 3D

coordinates. A CDR loop is denoted Y, suppose it has 𝑁 amino

acids, it is represented as

Y = (A,X), A = [a1, · · · , a𝑁 ], X = [x1, · · · , x𝑁 ] . (2)

As described in Definition 1, a𝑖 represents the 𝑖-th amino acid’ cate-

gorical distribution, x1, · · · , x𝑁 ∈ 𝑅3
represent the amino acids’ 3D

coordinates. Following [20], we take the coordinate of 𝛼 atom as the

coordinate of the amino acid. An illustration of data representation

is given in Fig 1.

Compared with L1, L2, L3 loops, the H1, H2, H3 loop in the CDR

of an antibody plays a critical role in its binding ability to potential

antigens [34, 39]. Therefore, this paper restricts our attention to

designing H1, H2, and H3 loops separately.

Validity constraints. We define the validity of the generated loop

based on empirical domain knowledge about CDR loops [35, 48, 55].

Specifically, we define the validity of a generated 3D CDR loop

when it satisfies the following two constraints:

(1) Peptide bond length. Multiple amino acids are linked together

by peptide bonds and form a single chain. The length of peptide

bonds is relatively fixed, i.e., the distance between connected amino

acids is a constant [55], (| | · | |2 represents 𝑙2 norm of vector)

| |x𝑖 − x𝑖+1 | |2 = ^, for 𝑖 = 1, · · · , 𝑁 − 1. (3)

(2) Open loop. The shape of CDR is an open loop, as shown in

Fig 1, where the distance between the first and the last amino

acids (coordinates are x1 and x𝑁 respectively) is within a specific

range [35, 48],

𝜖1 ≤ ||x1 − x𝑁 | |2 ≤ 𝜖2 . (4)
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The setup of ^, 𝜖1, 𝜖2 is based on domain knowledge [35, 48] and

empirical validation, e.g., for H1 loop, ^ = 3.80, 𝜖1 = 11.4, 𝜖2 = 13.1;

for H2 loop, ^ = 3.81, 𝜖1 = 5.0, 𝜖2 = 5.9; for H3, ^ = 3.81, 𝜖1 =

6.50, 𝜖2 = 8.50. The units of ^, 𝜖1, 𝜖2 are Angstrom 𝐴 (10
−10

m).

Definition 4 (ConstrainedManifoldM). Wedefine the constrained

manifold M to represent the set of CDR loops that satisfy the con-

straints defined in Eq.3 and 4. Formally,M is defined as

M =
{
(A,X) |𝜖1 ≤ ||x1 − x𝑁 | |2 ≤ 𝜖2,&

| |x1 − x2 | |2 = | |x2 − x3 | |2 = · · · = | |x𝑁−1 − x𝑁 | |2 = ^
}
.

(5)

Problem 1 (constrained de novo antibody CDR loop design). Con-

strained de novo antibody CDR loop design aims to generate novel

3D CDR loopsYs within the constrained manifoldM from scratch,

i.e., Y ∈ M.

3.2 Background: (unconstrained) energy model
This section briefly introduces the vanilla (unconstrained) energy

model as background [6, 13, 17, 27]. Energy model (a.k.a. energy

based model, EBM) defines a parameterized probability distribution

𝑃\ over all the data points (CDR loops Y here),

𝑃\ (Y) = 𝑒−𝐸\ (Y)

𝑍 (\ ) , 𝑍 (\ ) =
∫

𝑒−𝐸\ (Y)𝑑Y, (6)

where \ are the learnable parameters, energy function 𝐸\ (Y) is
usually a neural networkwhose output is a scalar.𝑍 (\ ) is normaliza-

tion constant, a.k.a. partition function. Due to the high dimension,

cardinality and complexity of 𝐸\ , 𝑍 (\ ) is usually computationally

intractable. Intuitively, an ideal energy function assigns lower en-

ergy 𝐸\ (corresponds to higher probability/likelihood 𝑃\ ) to data

points that are close to real CDR loops and higher energies to other

data points.

Compared with other deep generative models in Sec 2, energy

models can bypass the need to reconstruct 3D graph structure ex-

plicitly. Because the energy measure is a scalar, and is differentiable

with respect to the data points, energy models can back-propagate

the gradient to update the data points directly. In the context of 3D

graphs, we select a translation-, rotation- invariant graph neural

network as the parameterized energy function to represent the data

(3D graph). As a result, the translation-, rotation- invariances are

naturally preserved (will be discussed in Sec 3.3). When generating

graphs, we start from scratch and back-propagate the gradient of

the energy function to update the 3D graph structure iteratively.

To learn the energy model with maximum likelihood learning,

we will maximize log likelihood (Eq. 12) on real data distribution,

arg max

\

L(\ ), L(\ ) = 1

|D|
∑︁

Y (+) ∈D log 𝑃\ (Y (+) )

=EY (+)∼𝑃data [−𝐸\ (Y
(+) )] − log𝑍 (\ ),

(7)

whereD denotes the training set; E denotes expectation; 𝑃
data

is the

distribution of real data points, the training dataY (+)
can be seen as

i.i.d. samples drawn from 𝑃
data

. Asmentioned above, an ideal energy

function assigns lower energy to real data and higher energy to

the other data points. However, maximum likelihood learning only

encourages the lower energies to real data and is insufficient. To

address this issue, contrastive divergence is incorporated to create

the hallucinated samples (a.k.a. negative samples, denoted Y (−)
)

Figure 2: Unconstrained energy model versus constrained
energy model. 𝑃\ (Y) (Eq. 6 or 9) represents the proba-
bility/likelihood of energy model. Positive samples (red)
have higher probabilities while hallucinated samples (green)
have lower probabilities. Different from the unconstrained
(vanilla) energy model (Sec 3.2), the constrained energy
model defines a constrained manifold (purple) that repre-
sents the CDR loops that satisfy constraints on geometry
shape. Hallucinated samples are restricted in the manifold
so that we have high-quality hallucinated samples and do
not have to explore the invalid region (out of the constrained
manifold). As shown in the purple dashed box in the right fig-
ure, when updating hallucinated samples, we need to project
the new samples back to the manifold (purple) using retrac-
tion (Definition 5), as shown in Eq. (14).

and provide contrastive information [17, 27]. More specifically,

the hallucinated samples are drawn from energy-based probability

distribution 𝑃\ (Eq.6). The learning objective becomes

L(\ ) = EY (+)∼𝑃data
[
− 𝐸\ (Y (+) )

]
+ EY (−)∼𝑃\

[
𝐸\ (Y (−) )

]
, (8)

where the logarithm of normalization constants log𝑍 (\ ) are elimi-

nated in the whole objective. In order to sample from 𝑃\ (Y) defined
in Eq.(6), we resort to gradient based Markov Chain Monte Carlo

(MCMC) [52]. Traditional MCMC methods leverage random-walk

based proposal (e.g., Gaussian). And due to random-walk behav-

ior, it usually suffers from poor efficiency in exploring the state

space. To address this issue, we propose to use gradient MCMC by

leveraging the geometric information of the target probability to

enhance the sampling efficiency.

3.3 Constrained Energy Model (CEM)
This section describes the proposed Constrained Energy Model

(CEM), including its formulation, neural architecture of energy func-

tion, learning and inference procedures. Fig 2 illustrates themain dif-

ference between the unconstrained energy model and Constrained

Energy Model, Fig 3 demonstrate CEM’s pipeline.

3.3.1 Formulation. Different from an unconstrained energy model,

Constrained Energy Model defines a parameterized probability

distribution 𝑃\ over all the CDR loopsY in the constrainedmanifold

M (Definition 4),M is the constrained manifold that contains all

the geometric valid CDR loops,

𝑃\ (Y) = 𝑒−𝐸\ (Y)

𝑍 (\ ) , Y ∈ M, 𝑍 (\ ) =
∫
Y∈M

𝑒−𝐸\ (Y)𝑑Y, (9)
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Figure 3: Pipeline of CEM. Both positive and hallucinated
samples are restricted to the constrained manifoldM (Defi-
nition 4). During the learning procedure, CEM alternatively
takes the following two steps: (i) update Constrained En-
ergy Model by maximizing the learning objective L(\ ) in
Eq.(13), where the energy functions of positive samples (red)
are pushed down and energy functions of hallucinated sam-
ples (green) are pushed up; (ii) update hallucinated samples
by sampling from 𝑃\ with retraction (purple box) following
Eq.(14). Retraction is to project the CDR loop onto the con-
strained manifold (Definition 5). Then during the inference
procedure, we fix the Constrained Energy Model and draw
samples from 𝑃\ (Y) (Eq. 9).

the data (Y) with lower energy 𝐸\ corresponds to higher probabil-

ity/likelihood 𝑃\ . Normalization constant 𝑍 (\ ) is the integral over
constrained manifoldM, and is still computationally intractable.

3.3.2 Neural architecture of energy function. Then we present the

parameterized energy function 𝐸\ . To represent the 3D CDR loop,

we leverage the state-of-the-art equivariant graph neural network

(EGNN) proposed in [43] so that the translation and rotation on

the 3D graph (coordinates) would not change EGNN’s output.

Specifically, as mentioned in Definition 3, the input CDR loop

features are Y = (A,X), A represent amino acid feature and X
represent 3D coordinates of the amino acids. Suppose B ∈ 𝑅 |V |×𝑑

is the embedding matrix of all the categories of amino acids in a

vocabulary set V , is randomly initialized and learnable, 𝑑 is the

hidden dimension in EGNN. Each kind of amino acid corresponds

to a row in B. We suppose there are 𝑁 amino acids in the CDR loop,

each amino acid corresponds to a node in a 3D structure. Node

embeddings at the 𝑙-th layer are denoted as H(𝑙) = {h(𝑙)
𝑖

}𝑁
𝑖=1

, where

𝑙 = 0, 1, · · · , 𝐿, 𝐿 is number of layers in EGNN. The initial node

embedding h(0)
𝑖

= B⊤a𝑖 ∈ 𝑅𝑑 embeds the 𝑖-th node, where a𝑖 is
defined in Definition 1. Coordinate embeddings at the 𝑙-th layer

are denoted X(𝑙) = {x(𝑙)
𝑖

}𝑁
𝑖=1

. The initial coordinate embeddings

X(0) = {x
𝑖
}𝑁
𝑖=1

are the real 3D coordinates of all the nodes (Eq.2).

The following equation defines the feedforward rules of EGNN,

for 𝑖, 𝑗 = 1, · · · , 𝑁 , 𝑖 ≠ 𝑗, 𝑙 = 0, 1, · · · , 𝐿 − 1, we have

w(𝑙+1)
𝑖 𝑗

= 𝜙𝑒

(
h(𝑙)
𝑖

⊕ h(𝑙)
𝑗

⊕ ||x(𝑙)
𝑖

− x(𝑙)
𝑗

| |2
2

)
∈ 𝑅𝑑 ,

v(𝑙+1)
𝑖

=
∑︁𝑁

𝑗=1, 𝑗≠𝑖
w(𝑙+1)
𝑖 𝑗

∈ 𝑅𝑑 , h(𝑙+1)
𝑖

= 𝜙ℎ

(
h(𝑙)
𝑖

⊕ v(𝑙+1)
𝑖

)
∈ 𝑅𝑑 ,

x(𝑙+1)
𝑖

= x(𝑙)
𝑖

+
∑︁𝑁

𝑗=1, 𝑗≠𝑖

(
x(𝑙)
𝑖

− x(𝑙)
𝑗

)
𝜙𝑥

(
w(𝑙)
𝑖 𝑗

)
∈ 𝑅3,

(10)

where ⊕ denotes the concatenation of vectors; 𝜙𝑒 (·) : 𝑅2𝑑+1 −→
𝑅𝑑 ;𝜙𝑥 (·) : 𝑅𝑑 −→ 𝑅;𝜙ℎ (·) : 𝑅2𝑑 −→ 𝑅𝑑 are all two-layer multiple

layer perceptrons (MLPs) with Swish activation in the hidden layer

[38]. At the 𝑙-th layer, w(𝑙)
𝑖 𝑗

represents the message vector for the

edge from node 𝑖 to node 𝑗 ; v(𝑙)
𝑖

represents the message vector

for node 𝑖 , x(𝑙)
𝑖

is the position embedding for node 𝑖; h(𝑙)
𝑖

is the

node embedding for node 𝑖 . H(𝐿) = [h(𝐿)
1

, · · · , h(𝐿)
𝑁

] are the node
embeddings of the 𝐿-th (last) layer. We aggregate them using sum

function as readout function to obtain a representation of the whole

CDR loop,

hY =
∑︁𝑁

𝑖=1

h(𝐿)
𝑖

∈ 𝑅𝑑 . (11)

The scalar energy of the 3D CDR loops is

𝐸\ (Y) = 𝐸\ (A,X) = h⊤Yz ∈ 𝑅, z ∈ 𝑅𝑑 (12)

where z is learnable parameter. Now we show the energy function

is invariant w.r.t. rotation and translation on 3D graph structure.

Lemma 1. Suppose X̂ = [x̂1, · · · , x̂𝑁 ] are the 3D coordinates of the

graph by rotating and translating original graph whose coordinates

are X = [x1, · · · , x𝑁 ], 𝐸\ (Y) = 𝐸\ (A,X) and 𝐸\ (Ŷ) = 𝐸\ (A, X̂)
are the corresponding scalar energy, respectively, then the output

would not change, i.e., 𝐸\ (Y) = 𝐸\ (Ŷ). The proof is in Appendix.

Thus, the translation-, rotation- invariances are preserved. Also,

the scalar energy is differentiable w.r.t. CDR loop feature A and X,

thus enabling gradient based continuous optimization, as discussed

below.

3.3.3 Learning. As mentioned in Sec 3.2, the core idea to train

the energy model is to push down the positive samples and push

up the hallucinated samples at the same time. Different from the

unconstrained case in Eq.(8), in Constrained Energy Model we

restrict both the positive and hallucinated samples in the manifold

M, as illustrated in Fig 2. The learning objective becomes

𝐿(\ ) = EY (+)∼𝑃data
[
− 𝐸\ (Y (+) )

]
+ EY (−)∼𝑃\

[
𝐸\ (Y (−) )

]
, (13)

where Y (+) ,Y (−) ∈ M. Specifically, gradient methods do not

need to evaluate 𝑃\ (Y) directly, instead, it needs to evaluate the

gradient of the log-probability, i.e., −∇𝐸\ . At the 𝑡-th step, a sample

is updated via(
A (−) ) (𝑡 ) = (

A (−) ) (𝑡−1) − _𝑡∇A𝐸\ ((A (−) ) (𝑡−1) ) + Ξ,(
X (−) ) (𝑡 ) = RM

( (
X (−) ) (𝑡−1) − _𝑡∇X𝐸\ ((X (−) ) (𝑡−1) ) + Γ

)
,

(14)

where _𝑡 is the step size at the 𝑡-th iteration, Ξ and Γ have the same

shape withA andX, respectively. Each scalar element in Ξ/Γ is i.i.d.

drawn from zero-mean Gaussian distribution whose variance is√
_𝑡 , i.e., Γi ∼ N(0, _t) for any scalar element Γ𝑖 ∈ Γ, Ξi ∼ N(0, _t)

for any scalar element Ξi ∈ Ξ. Unlike the unconstrained sampling

setting, our sampling space is restricted to the manifoldM, so when

update X, we need to project the updated samples to the manifold

using retraction operation, following [4, 25]:

Definition 5 (Retraction). Given a data point out of the manifold

M, retraction is the operation that projects it onto the closest data

point in the manifold. Formally, we have

RM (X) = arg minX′∈M | |X − X′ | |, X ∉ M (15)

we slightly abuse the notations, omit the A in the expression X ∉

M,X′ ∈ M. | | · | | is a distance function, which is the sum of square
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Euclidean distance of coordinates. The constraints of the manifold

M are hard (Eq.3, 4). To relax it, we augment it into the learning

objective and solve the following optimization problem,

arg minxnew
1

,· · · ,xnew
𝑁

𝑁∑︁
𝑖=1

| |xnew𝑖 − xold𝑖 | |2
2
+ 𝛾1

𝑁−1∑︁
𝑖=1

��∥xnew𝑖 − xnew𝑖+1
∥2

2
− ^2

��
+ 𝛾2

��| |xnew
1

− xnew
𝑁

| |2
2
−
(
(b1 + b2)/2

)
2
��,
(16)

where {xold
1

, · · · , xold
𝑁

} and {xnew
1

, · · · , xnew
𝑁

} are coordinates in X
andX′

in Eq.15 respectively, the first term (i.e.,

∑𝑁
𝑖=1

| |xnew
𝑖

−xold
𝑖

| |2
2
)

is a decomposition of | |X − X′ | | in Eq.(15); the second and third

terms relax the constraints defined in Eq.(3) and (4) respectively.

𝛾1 and 𝛾2 are hyperparameters that control the weight of various

terms. To make sure that the constraints are met, we set 𝛾1, 𝛾2 ≫ 1.

Algorithm 1 Constrained Energy Model (CEM)

1: Input: training CDR loops {Y (+) = (A (+) ,X (+) )}.
2: Output: top-K samples with lowest energy values.

3: # Learning: alternatively update energy model and hallucinated

samples. Hallucinated samples Y (−) = (A (−) ,X (−) ) are ran-
domly initialized.

4: for 𝑡 = 1, 2, · · · ,𝑇 do
5: update Constrained Energy Model 𝐸\ via optimizing Eq. (13)

(using both Y (+)
and Y (−)

).

6: update hallucinated sample Y (−) = (A (−) ,X (−) ) (Eq. 14).
7: end for
8: # Inference: sampling from the distribution 𝑃\ (Y) (Eq. 9).
9: for 𝑡 = 1, 2, · · · , do
10: Sampling from 𝑃\ (Y) based on Eq. (14)

11: end for
12: select top-K samples with lowest energy values (Sec 3.3.4).

3.3.4 Inference. During the inference, we fixed Constrained En-

ergyModel and sampling from the probability distribution 𝑃\ (Y) =
𝑃\ (A,X). It leverages the same sampling strategy as Eq.14. Specif-

ically, we start from a random initialization (i.e., A (0) ,X (0)
). Then

to select most promising CDR loops, given all the drawn samples,

we discretize the continuous amino acid featuresA = [a1, · · · , a𝑁 ]
using argmax operation on a to select the amino acid category.

Then we feedforward the discrete amino acid featureA, and 3D

coordinates X to EGNN obtain their energy value. We select the

samples with lowest energy value (𝐸\ in Eq. 9). Based on Eq. (9)

(𝑃\ (Y) = 𝑒−𝐸\ (Y)/𝑍 (\ )), lower energy corresponds to higher like-

lihood 𝑃\ . Algorithm 1 summarizes essential steps of the pipeline.

3.4 Theoretical Analysis
In this section, we analyze the theoretical properties of the proposed

method. Specifically, we show that compared with vanilla energy

model (unconstrained), the proposed Constrained Energy Model

requires less sample complexity to reach the same empirical risk.

We start with the definition of some basic concepts in statistical

learning theory. The detailed explanations and examples of these

definitions are available at [50].

Definition 6 (Condition number). LetW be a smooth𝑑-dimensional

submanifold of 𝑅𝑚 . The condition number 𝑐 (W) is defined to be

1

𝜏 , where 𝜏 is the largest number to have the property: for any

𝑟 < 𝜏 , there are no two normals of length 𝑟 that are incident onW
at different points intersect. Formally, given two linear subspaces

𝑉 ,𝑊 , let < 𝑉 ,𝑊 > be the angle between 𝑉 and𝑊 , defined as

< 𝑉 ,𝑊 >= arccos

(
supv∈𝑉 infw∈𝑊

(
v · w

)
/
(
| |v| |2 | |w| |2

) )
(17)

where the arccos function is the inverse of the cosine function.

For any manifold, the condition number is defined as 𝑐 (W) =

inf𝑥,𝑦∈W2 sin(< 𝑇𝑥 ,𝑇𝑦 >)/| |𝑥 − 𝑦 | |2, where the infimum is taken

over distinct points 𝑥,𝑦 ∈ W, sin is sine function,𝑇𝑥 and𝑇𝑦 are the

tangent spaces at 𝑥 and 𝑦. Tangent space of a manifold generalizes

to higher dimensions the notion of tangent planes to surfaces in

three dimensions and tangent lines to curves in two dimensions.

We assume that we are learning an indicator function 𝑓 whose

domain is W with binary range. Regression case requires real-

valued functions on the manifold and need to consider functional

analysis on the manifold [50]. Thus, binary classification (indicator

function instead of real-valued function) is usually discussed to

analyze the sample complexity [3, 8, 18, 50]. Then we define the

collections of indicator functions (𝑓 ).

Definition 7 (Collections of indicator functions). Let S𝜏 (W) de-
note all the closed sets in manifold W, i.e., S𝜏 (W) =

{
𝑆 | 𝑆 =

𝑆 ⊂ W and 𝑐 (𝑆 ∩ W\𝑆) ≤ 1

𝜏

}
, where 𝑆 is the closure of 𝑆 . Let

C𝜏 =
{
𝑓 : W −→ {0, 1} | 𝑓 −1 (1) ∈ S𝜏

}
. The class C𝜏 is the collec-

tion of indicators of all the closed sets in W whose boundaries

are (1/𝜏)-conditioned (d-1)-dimensional submanifolds of 𝑅𝑚 . Then

we define annealed entropy to measure the capacity of the set of

indicator functions.

Definition 8 (Annealed entropy). Let P be a probability mea-

sure supported on a manifold W. Given a collection of indica-

tor functions C and a set of 𝑙 points 𝑍 = {𝑧1, · · · , 𝑧𝑙 } ⊂ W,

𝑧1, · · · , 𝑧𝑙 are 𝑙 i.i.d. (independent and identically distributed) sam-

ples from P, let N(C, 𝑙) be the number of ways of partitioning

𝑧1, · · · , 𝑧𝑙 into two sets using indicators belonging to C. Annealed
entropy (a.k.a. annealed VC entropy) is defined as 𝐻 (C,P, 𝑙) =

log

[
E
𝑧1,· · · ,𝑧𝑙

i.i.d.∼ P
N(C, 𝑍 )

]
.

Remarks. When the annealed entropy is large, it means that there

are a lot of different ways to classify the data points and the capacity

of the set of indicator functions is large. It also means the probability

measure is hard to learn. In contrast, lower annealed entropy is

more desirable.

Definition 9 (Packing number). Let 𝑁𝑝 (𝜖𝑟 ) be the largest num-

ber 𝑁 such that W contains 𝑁 disjoint balls BW (𝑥, 𝜖𝑟 ), where
BW (𝑥, 𝜖𝑟 ) is a geodesic ball inW around 𝑥 of radius 𝜖𝑟 .

Definition 10 (Risk). The risk 𝑅(𝛼) of a machine learning clas-

sifier 𝛼 is defined as the probability that 𝛼 misclassifies a random

data point (𝑥,𝑦) (x is the input feature, y is the label, 𝛼 (𝑥) is the
prediction) drawn from P. Formally, 𝑅(𝛼) = E𝑥∼P [𝛼 (𝑥) ≠ 𝑦]. The
empirical risk is defined as 𝑅emp (𝛼) =

∑𝑙
𝑖=1

1(𝛼 (𝑥𝑖 ) ≠ 𝑦𝑖 )/𝑙, where
1(·) denotes the indicator function, 𝑥𝑖 and 𝑦𝑖 are input feature and
label of the 𝑖-th sampled data point, respectively.
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All the definitions above are well established in [50]. Then before

presenting main theoretical results in Theorem 3, we show some

existing theoretical results on manifold learning in Theorem 1 & 2.

Theorem 1. (Theorem 11 in [32]). Let W be a 𝑑-dimensional sub-

manifold of 𝑅𝑚 , whose condition number is no greater than 1/^0.

Let P be a probability measure supported onW, whose density rel-

ative to the uniform probability measure onW is bounded by 𝜌 . We

let 𝜖𝑟 = min{ 𝜏
4
,
^0

4
, 1}b/2𝜌 . When the number 𝑛 of random samples

from P is large, i.e., 𝑛 ≥ 𝑁𝑝 (𝜖𝑟 /2)𝑑 ln(2
√
𝑑𝜌2/b)/b2

, the annealed

entropy of C𝜏 can be bounded as 𝐻 (C𝜏 ,P,
⌈
𝑛 −

√︁
𝑛 ln(2𝜋𝑛)

⌉
) ≤

4b𝑛 + 1.

Theorem 2. (Vapnik [50], Theorem 4.2) For any 𝑙 and 𝜖 , we have

P
[
sup𝛼 ∈C (𝑅(𝛼)−𝑅emp (𝛼))/

√︁
𝑅(𝛼) > 𝜖

]
< 4𝑒 (

𝐻 (C,P,2𝑙 )
𝑙

− 𝜖2

4
)𝑙
, where

random samples are sampled from the probability distribution P.

Assumption 1. The constrained and unconstrained case has the

same number of packing number (defined in Definition 9).

During the theoretical analysis, we omit the unconstrained part

amino acid feature A and restrict our attention to the learning

of coordinate feature X. Thus, the constrained manifold becomes

M =
{
X = [x1, · · · , x𝑁 ]

�� | |x1 − x2 | |2 = | |x2 − x3 | |2 = · · · =

| |x𝑁−1 − x𝑁 | |2 = ^, 𝜖1 ≤ ||x1 − x𝑁 | |2 ≤ 𝜖2

}
.

Lemma2. The constrainedmanifoldM above is a (2N+1)-dimensional,

smooth sub-manifold of 𝑅3𝑁
, 𝑁 is number of amino acids in CDR.

Theorem 3 (Sample complexity). We suppose the sample com-

plexity (i.e., number of random samples) of CEM and vanilla en-

ergy model are denoted 𝑛 (𝑐) and 𝑛 (𝑢) , respectively. Under As-

sumption 1, given 𝜖 and 𝛿 , to make sure the risks 𝑅(𝛼) satisfies
P
[
sup𝛼 ∈C (𝑅(𝛼) − 𝑅emp (𝛼))/

√︁
𝑅(𝛼) < 𝜖

]
< 𝛿 , we have 𝑛 (𝑐) <

(2𝑁 + 1)/(3𝑁 )𝑛 (𝑢) .

Remarks. To guarantee the same empirical learning risk, learning

on the constrained manifold M requires less sample complexity

(around two thirds) than the unconstrained method.

4 EXPERIMENT
4.1 Data and Preprocessing
This section describes the datasets and the preprocessing procedure.

Structural antibody database SabDab2 is a database containing

5,494 antibodies available in the Protein Data Bank (PDB), annotated

and presented in a consistent fashion [10, 19]. One antibody may

contain multiple CDR loops (both amino acid sequence and 3D

structure). After filtering the antibodies whose CDR structures are

not available, we obtain 8,381 CDR loops. The average lengths and

standard deviations for H1, H2, and H3 are 7.2 ± 0.6, 5.9 ± 0.7, and

12.3 ± 4.4, respectively. The data points are randomly split into

training, validation, and test set with a ratio of 8:1:1. The data is

in the PDB file format with all atom coordinates available. We use

the coordinate of 𝛼-carbon atom to denote the coordinate of amino

acid, following [20, 21].

2
It is publicly available at http://opig.stats.ox.ac.uk/webapps/newsabdab/sabdab/.

4.2 Evaluation Metrics
We describe metrics for amino acid sequence and 3D structures.

(1) Amino acid sequence level metrics include: (1.1) Protein
Perplexity (PPL). Protein perplexity is the exponential of the av-

erage log-likelihood andmeasures howwell a probability model pre-

dicts amino acid sequence [2, 19, 20, 57]. It is defined as Perplexity(C)
= exp

(
− (1/𝑁 )∑𝑁

𝑖=1
log𝑄 (c𝑖 |C<𝑖 )

)
, where C is an amino acid se-

quence, c𝑖 is the 𝑖-th amino acid in C, C<𝑖 denotes the first 𝑖 − 1

amino acids in the sequence C. 𝑄 (c𝑖 |C<𝑖 ) is a well-trained LSTM

model. Lower perplexity values are more desirable for an amino

acid sequence. (1.2) Similarity is measured on amino acid sequence

level. We define the similarity between two sequences 𝑐1 and 𝑐2 as

sim(𝑐1, 𝑐2) = |LCS(𝑐1, 𝑐2) |/max{|𝑐1 |, |𝑐2 |}, (18)

where |𝑐 | represent the length of amino acid sequence 𝑐 , i.e., number

of amino acids in the sequence 𝑐 . LCS(𝑐1, 𝑐2) denotes the longest
common substring between 𝑐1 and 𝑐2, which can be computed by

dynamic programming algorithm. Similarity value ranges from

0 to 1, a higher value indicates more similarity. The distance is

defined as one minus similarity. The similarity is not used di-

rectly in our experiment. It is used for evaluating diversity. (1.3)
Diversity (Div) is defined as the average pairwise distance be-

tween the CDR loops, following the definition of the diversity

of molecule set [11, 12, 19]. Specifically, suppose C is the set of

all the generated CDR amino acid sequences, diversity is defined

as diversity(C) = 1 − 1

|C | ( |C |−1)
∑
𝑐1,𝑐2∈C,𝑐1≠𝑐2

sim(𝑐1, 𝑐2), where
sim(·, ·) is the similarity function defined above. Diversity ranges

from 0 to 1, higher diversity is more desirable.

(2) 3D graph structure level metrics include: (2.1) Root-Mean-
SquareDeviation (RMSD)measures the alignment between tested

conformations 𝐺 ∈ 𝑅𝑁×3
and reference conformation 𝐺𝑟 ∈ 𝑅𝑁×3

,

𝑁 is the number of points in the conformation, defined as RMSD(𝐺,𝐺)
=
(
(1/𝑁 )∑𝑁

𝑖=1
| |𝐺𝑖 −𝐺𝑖 | |2

2

) 1

2 , where𝐺𝑖 is the 𝑖-th row of conforma-

tion 𝐺 . The conformation 𝐺 is obtained by an alignment function

𝐺 = 𝐴(𝐺,𝐺𝑟 ), which rotates and translates the reference conforma-

tion𝐺𝑟
to have the smallest distance to the generated𝐺 according to

the RMSDmetrics, which is calculated by the Kabsch algorithm [22].

For each CDR loop in test set, to evaluate RMSD, we select the clos-

est CDR loop (in terms of RMSD) from the set of all the generated

CDR loops. (2.2) Validity Rate (%V) is the percentage of valid CDR
loops in all the generated CDRs. A CDR loop is valid if it satisfies

two criteria in Eq.(3) and (4). Higher validity is more desirable.

4.3 Baseline Methods
In this section, we briefly describe the baseline methods. The im-

plementation details are provided in Sec B.2 in the supplementary

materials. All baseline methods are SOTA approaches in antibody

design [21]. We use the default setup following their original papers.

(1) Reference evaluates the metrics of real CDR loops in test set

as reference. (2) LSTM [1, 42] leverages a long short-term memory

model to generate the amino acid sequence in an autoregressive

manner and does not model 3D structure. (3) Genetic algorithm
(GA) starts from a population of CDR loops. Given the data in the

current population, we leverage crossover and mutation to produce

offsprings for the next generation (i.e., iteration) [28]. (4) Iterative
Refinement Graph Neural Network (IR-GNN) was proposed

http://opig.stats.ox.ac.uk/webapps/newsabdab/sabdab/
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Table 2: de novo antibody CDR loop (including H1, H2, H3)
design results on SAbDab. On each task and for each method,
we conduct 5 independent runs with different random seed
and data split. The average and standard deviation of themet-
rics are reported. LSTM onlymodels the amino acid sequence,
so RMSD and %V results are not available. We also conduct
the t-test to compare the difference between CEM and the best
baseline method (IR-GNN). On each task and each metric,
we highlight the best result. Symbol * denotes the results
pass the t-test with p-value < 0.05. The t-test results show
that all improvements are significantly better than the best
baseline method (IR-GNN). Several methods, including CEM
achieved similar diversity measure, while no single method
is consistently better.

Task Method PPL (↓) RMSD (↓) %V (↑) Div (↑)

H1

Reference 8.10±0.08 0.0±0.00 100.0±0.0% 0.518±0.024
LSTM 10.20±0.23 - - 0.553±0.045
GA 10.48±0.26 1.99±0.13 44.0±1.9% 0.635±0.047

AR-GNN 9.55±0.25 1.97±0.11 61.7±1.7% 0.632±0.050
IR-GNN 9.18±0.16 1.70±0.11 87.0±1.3% 0.684±0.014
EBM 9.84±0.27 1.92±0.25 75.3±1.8% 0.691±0.028
CEM 8.48±0.19* 1.29±0.15* 100.0±0.0%* 0.684±0.010

H2

Reference 8.57±0.12 0.0±0.0 100.0±0.0% 0.603±0.015
LSTM 10.86±0.35 - - 0.633±0.030
GA 10.25±0.26 1.93±0.19 34.3±1.8% 0.544±0.050

AR-GNN 10.54±0.24 1.69±0.30 34.5±1.1% 0.671±0.038
IR-GNN 9.65±0.16 1.12±0.17 86.9±0.9% 0.618±0.023
EBM 10.00±0.39 1.44±0.30 45.3±1.0% 0.665±0.031
CEM 9.31±0.10* 0.99±0.11 100.0±0.0%* 0.664±0.025

H3

Reference 9.84±0.32 0.0±0.0 100.0±0.0% 0.745±0.031
LSTM 12.35±0.33 - - 0.736±0.047
GA 12.75±0.29 4.33±0.98 13.4±% 0.713±0.054

AR-GNN 13.01±0.13 3.80±0.52 25.8±0.9% 0.754±0.025
IR-GNN 11.45±0.25 3.02±0.24 78.4±0.7% 0.751±0.017
EBM 10.93±0.48 3.21±0.86 62.7±1.0% 0.798±0.043
CEM 10.49±0.15* 2.01±0.10* 99.0±0.3%* 0.786±0.013

for 3D antibody CDR design [21]. It first unravels amino acid se-

quence and iteratively refines its predicted global structure. The

inferred structure in turn guides subsequent amino acid choices. (5)
Auto-Regressive Graph Neural Network (AR-GNN)) [30, 53]
was originally proposed for small-molecule generation and was

adapted for antibody CDR design [21]. Unlike IR-GNN that uses

iterative refinement mechanism, AR-GNN generates the amino acid

sequence and 3D structural graph in an autoregressive manner. (6)
Unconstrained Energy Based Model (EBM) [27] uses the same

neural architecture with the CEM, but does not consider constraints
and nor the constrained manifoldM. The other setups are the same

as CEM (Sec B.1). It can be seen as an ablation study that explores the
empirical effect of the constrained manifold on performance. LSTM,

IR-GNN, AR-GNN, EBM, and our method CEM all belong to deep

generative models, while genetic algorithm (GA) is a traditional

heuristic searching method. These baselines are reported with com-

petitive performance for antibody design [1, 21, 42]. Equivariant

normalizing flow [44] is an ODE type of flow model, which was

considered as a baseline. However, the training process is computa-

tionally expensive since the same forward operation has to be done

multiple times sequentially in order to solve the ODE equation. It

also exhibited some instabilities [43] and failed in our experiment,

so it is not included in the results.

4.4 Results
For all the compared methods, we conducted generation tasks on

H1, H2, H3 loops and report the results in Table 2. For each task

Figure 4: Two examples about CDR H3 loop design. In both
examples, our method CEM outperforms the best baseline
method IR-GNN in terms of PPL (perplexity), RMSD and
similarity with the reference (sim).

and each method, we conducted 5 independent runs with different

random seeds and data split. The average results of all the metrics

and their standard deviation are presented. We also conduct the

t-test to compare the difference between CEM and the best baseline

method (IR-GNN). From Table 2, we have the following observa-

tions: (1) our method outperforms all the baseline methods
significantly in terms of amino acid sequence level metric (PPL,

perplexity) and geometry graph metrics (RMSD, root-mean-square

deviation and %V, validity rate). Specifically, compared with the

best baseline method (IR-GNN), on H1/H2/H3 design tasks, our

method achieves 14.9%/15.0%/26.2% relative improvement in terms

of %V (87.0% versus 100.0%, 86.9% versus 100.0% and 78.4% versus

99.0%) respectively, 24.1%/11.6%/33.4% relative reduction in terms of

RMSD (1.70 versus 1.29, 0.99 versus 1.12 and 3.02 versus 2.01) respec-

tively, and 7.6%/3.5%/8.4% relative reduction in terms of PPL (9.18

versus 8.48, 9.65 versus 9.31 and 11.45 versus 10.49 respectively);

(2) H1 v.s. H2 v.s. H3: among all the three kinds of design tasks,

including H1, H2, H3 loops, almost all the methods get the highest

perplexity, RMSD, and lower validity in the H3 generation task.

This is consistent with the existing knowledge that CDR H3 loops

have the highest variability and most challenging to design [21, 39].

(3) Diversity: EBM, CEM, IR-GNN, and AR-GNN perform similarly

in terms of diversity, validating that our method can explore the

amino acid sequence space thoroughly (diversity is measured on

amino acid sequence level).

Ablation study (effect of constraints). To show the empirical ef-

fect of constraints, we also compare the results of EBM in Table 2.

We observe that CEM outperforms the vanilla energy based model

significantly and consistently across all the three generation tasks

(H1, H2, and H3), obtaining 32.8%, 120.7%, 57.9% relative improve-

ment in terms of validity rate (% V), respectively. The key reason

behind this observation is: CEM constrains the learning space to

the constrained manifold M, and only need to discriminate (i.e.,

assigning lower or higher energy value) the data points on the

manifold. This is also supported by the theoretical results in Sec 3.4:

Constrained Energy Model is more efficient than the unconstrained

energy model (i.e., vanilla energy model) in terms of sample com-

plexity. Examples. This section analyzes two examples of CDR

H3 loop design in Figure 4. For each example, we show the 3D

structures of CDR loops of CEM (ours) and reference (actual CDR
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loop in the test set) and IR-GNN (the best baseline method) as a

comparison. For each visualization, the conformation (3D struc-

ture) of our method and IR-GNN are rotated and translated by an

alignment function so that they have the smallest distance to the

reference conformation according to the RMSD metrics, which is

calculated by the Kabsch algorithm [22]. We found that on amino

acid sequence level, our method is more similar to the reference

than IR-GNN, e.g., in the first example (left), the similarity (defined

in Eq.18) between “EDGYFFT” (generated by CEM) and “DDGYFDT”
(the reference) is 0.71, whereas the similarity between “DFDWFAT”

(IR-GNN) and “DDGYFDT” (the reference) is only 0.43. Also, CEM
achieves lower (lower is better) perplexity than IR-GNN and are

closer to the reference conformation (lower RMSD score) in both

examples (0.86 versus 1.71 and 0.50 versus 0.93). These examples

provide an intuitive demonstration of CEM.

5 CONCLUSION
We have proposed Constrained Energy Model (CEM) for designing
3D antibody CDR loops. We first design a constrained manifold

for all the CDR loops that satisfy geometry constraints. Then we

design Constrained Energy Model that learns from both positive

and hallucinated samples in the constrained manifold and update

hallucinated samples in the constrained manifold. Theoretical anal-

ysis shows that the sample sizes required for constrained learning

on the manifold is less than about two-thirds of sample sizes for

unconstrained learning. Thorough empirical studies validate CEM’s
superiority in designing CDR H1, H2, H3 loops.
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A DETAILED THEORETICAL ANALYSIS
Overview. We first define some concepts required for theoretical

analysis, from Definition 6-10. All the definitions above are well

established in [50]. Then before presenting the main theoretical re-

sults in Lemma 2 and Theorem 3, we show some existing theoretical

results on manifold learning in Theorem 1 and 2.

A.1 Proof of Lemma 1
Lemma. Suppose X̂ = [x̂1, · · · , x̂𝑁 ] are the 3D coordinates of the

graph by rotating and translating the original 3D graph whose co-

ordinates are X = [x1, · · · , x𝑁 ], 𝐸\ (Y) = 𝐸\ (A,X) and 𝐸\ (Ŷ) =
𝐸\ (A, X̂) are the corresponding scalar energy, respectively, then
we have 𝐸\ (Y) = 𝐸\ (Ŷ). That is, rotating or translating the 3D

graph structure would not change the model’s output.

Proof. Any transformation (rotation and translation) on a point

in 3D Euclidean space can be represented as multiplying a 3 × 3

orthogonal matrix and adding a three-dimensional vector. Without

loss of generalization, we suppose rotation matrix is Q ∈ 𝑅3×3
,

which is an orthogonal matrix satisfying Q⊤Q = QQ⊤ = I3, where
I3 ∈ 𝑅3×3

is identity matrix; we also suppose the added three-

dimensional vector is b ∈ 𝑅3
. Transforming (rotation and transla-

tion) 3D graph whose coordinates are X = [x1, · · · , x𝑁 ] results in
a new 3D graph whose coordinates are

X̂ = [x̂1, · · · , x̂𝑁 ] = [Qx1 + b, · · · ,Qx𝑁 + b], (19)

where we use the notations ̂ to represent the features/variables

after transformation.

Then we revisit the feedforward rule of equivariant graph neural

network (EGNN) defined in Equation (10), for the original (before

transformation) feature, that is, for 𝑙 = 0, 1, 2, · · · , 𝐿 − 1, we have

w(𝑙+1)
𝑖 𝑗

= 𝜙𝑒

(
h(𝑙)
𝑖

⊕ h(𝑙)
𝑗

⊕ ||x(𝑙)
𝑖

− x(𝑙)
𝑗

| |2
2

)
∈ 𝑅𝑑 ,

v(𝑙+1)
𝑖

=

𝑁∑︁
𝑗=1, 𝑗≠𝑖

w(𝑙+1)
𝑖 𝑗

∈ 𝑅𝑑 ,

x(𝑙+1)
𝑖

= x(𝑙)
𝑖

+
𝑁∑︁

𝑗=1, 𝑗≠𝑖

(
x(𝑙)
𝑖

− x(𝑙)
𝑗

)
𝜙𝑥

(
w(𝑙)
𝑖 𝑗

)
∈ 𝑅3,

h(𝑙+1)
𝑖

= 𝜙ℎ

(
h(𝑙)
𝑖

⊕ v(𝑙+1)
𝑖

)
∈ 𝑅𝑑 ,

(20)

For in the transformed 3D graph structure, the amino acid category

feature A remains the same thus the node embeddings h0
stay the

same. We prove the results usingmathematical induction. The proof
by mathematical induction usually consists of two essential steps.

In the first step, we need to prove the base case (n = 0) holds. The

second step (a.k.a. the induction step) proves that if the statement

holds for any given case n=k, then it must also hold for the next

case n=k+1. Then we have

ŵ(𝑙+1)
𝑖 𝑗

= 𝜙𝑒

(
h(𝑙)
𝑖

⊕ h(𝑙)
𝑗

⊕ | |̂x(𝑙)
𝑖

− x̂(𝑙)
𝑗

| |2
2

)
∈ 𝑅𝑑 , (21)

where we use ŵ(𝑙+1)
𝑖 𝑗

to denote the message vector for the edge

(𝑖, 𝑗) in the transformed graph. We expand the term | |̂x(𝑙)
𝑖

− x̂(𝑙)
𝑗

| |2
2

as

| |̂x(𝑙)
𝑖

− x̂(𝑙)
𝑗

| |2
2
= | | (Qx(𝑙)

𝑖
+ 𝑏) − (Qx(𝑙)

𝑗
+ 𝑏) | |2

2

=| |Q(x(𝑙)
𝑖

− x(𝑙)
𝑗
) | |2

2
= (x(𝑙)

𝑖
− x(𝑙)

𝑗
)⊤Q⊤Q(x(𝑙)

𝑖
− x(𝑙)

𝑗
)

=| |x(𝑙)
𝑖

− x(𝑙)
𝑗

| |2
2

(22)

where the third equality holds because Q is an orthogonal matrix.

Also, translation, rotation does not change the node embeddings

h(𝑙)
𝑖

, because it is only related to the category of amino acids. Thus,

for the first line in Equation 20, we have:

ŵ(𝑙+1)
𝑖 𝑗

= w(𝑙+1)
𝑖 𝑗

(23)

Then based on the definition of v(𝑙+1)
𝑖

(the second line in Equa-

tion 20), we have:

v̂(𝑙+1)
𝑖

=

𝑁∑︁
𝑗=1, 𝑗≠𝑖

ŵ(𝑙+1)
𝑖 𝑗

=

𝑁∑︁
𝑗=1, 𝑗≠𝑖

w(𝑙+1)
𝑖 𝑗

= v(𝑙+1)
𝑖

(24)

Then based on the definition of x(𝑙+1)
𝑖

, we have:

x̂(𝑙+1)
𝑖

= x̂(𝑙)
𝑖

+
𝑁∑︁

𝑗=1, 𝑗≠𝑖

(
x̂(𝑙)
𝑖

− x̂(𝑙)
𝑗

)
𝜙𝑥

(
ŵ(𝑙)
𝑖 𝑗

)
=Qx(𝑙)

𝑖
+ b +

𝑁∑︁
𝑗=1, 𝑗≠𝑖

(
Qx(𝑙)

𝑖
+ b − (Qx(𝑙)

𝑗
+ b)

)
𝜙𝑥

(
ŵ(𝑙)
𝑖 𝑗

)
=Qx(𝑙)

𝑖
+ b +

𝑁∑︁
𝑗=1, 𝑗≠𝑖

(
Qx(𝑙)

𝑖
+ b − (Qx(𝑙)

𝑗
+ b)

)
𝜙𝑥

(
w(𝑙)
𝑖 𝑗

)
=Q

[
x(𝑙)
𝑖

+
𝑁∑︁

𝑗=1, 𝑗≠𝑖

(
x(𝑙)
𝑖

− x(𝑙)
𝑗

)
𝜙𝑥

(
w(𝑙)
𝑖 𝑗

)]
+ b = Qx(𝑙+1)

𝑖
+ b

(25)

In addition, based on definition of h(𝑙+1)
𝑖

(the fourth line in Equa-

tion 20), we have:

ĥ(𝑙+1)
𝑖

= 𝜙ℎ

(
ĥ(𝑙)
𝑖

⊕ v̂(𝑙+1)
𝑖

)
= 𝜙ℎ

(
h(𝑙)
𝑖

⊕ v(𝑙+1)
𝑖

)
= h(𝑙+1)

𝑖
(26)

First, we consider the base case in mathematical induction. Specifi-

cally, we can prove that Equation 23, 24, 25 and 26 hold for 𝑙 = 0.

Thenwe consider the second step (induction step) for 𝑙 = 0, 1, 2, · · · , 𝐿−
1, i.e., suppose Equation 23, 24, 25 and 26 hold for 𝑙 , we can prove

they hold for 𝑙 + 1. Finally, we get ĥ(𝐿)
𝑖

= h(𝐿)
𝑖

. Then we extend the

equality to the graph level representation (Equation 11),

ĥŶ =

𝑁∑︁
𝑖=1

ĥ(𝐿)
𝑖

=

𝑁∑︁
𝑖=1

h(𝐿)
𝑖

= hY (27)

The scalar energy (Equation 12) of the transformed 3D CDR loops

is 𝐸\ (Ŷ) = (ĥŶ )⊤z = h⊤Yz = 𝐸\ (Y). Proved. □

A.2 Proof of Lemma 2
Lemma. The constraint manifold M (Definition 4) is a (2N+1)-

dimensional, smooth sub-manifold of 𝑅3𝑁
, where 𝑁 is the number

of amino acids in the CDR loop.

Proof. As mentioned in Section 3.4, we restrict our attention to

the learning of 3D coordinatesX = [x1, · · · , x𝑁 ], where x1, · · · , x𝑁 ∈
𝑅3

. The dimension of the unconstrained space is 3𝑁 . As mentioned
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in Equation (5), we have 𝑁 −1 hard constraints, i.e., | |x1 −x2 | |2 = ^;

· · · ; | |x𝑁−1 − x𝑁 | |2 = ^. In statistics, the number of degrees of

freedom is the number of values in the final statistic calculation

that are free to vary [51]. Each constraint would decrease the

degree of freedom by 1. On the other hand, another constraint

𝜖1 ≤ ||x1 − x𝑁 | |2 ≤ 𝜖2 would not decrease the dimension of

the constrained space. Thus, the dimension of the manifold is

3𝑁 − (𝑁 − 1) = 2𝑁 + 1. In addition, each constraint is smooth,

indicating the boundary of M is smooth. In sum, M is a (2N+1)-

dimensional, smooth sub-manifold of 𝑅3𝑁
. Proved. □

A.3 Proof of Theorem 3
Theorem [Sample complexity] we suppose the sample com-

plexity (i.e., number of random samples) of CEM and vanilla en-

ergy model are denoted 𝑛 (𝑐) and 𝑛 (𝑢) , respectively. Under As-

sumption 1, given 𝜖 and 𝛿 , to make sure the risks 𝑅(𝛼) satisfies
P
[
sup

𝛼 ∈C

𝑅 (𝛼)−𝑅emp (𝛼)√
𝑅 (𝛼)

> 𝜖
]
< 𝛿 , we have 𝑛 (𝑐) < 2𝑁+1

3𝑁
𝑛 (𝑢) .

Proof. Based on Theorem 2, we can get the upper bound of

the annealed entropy: 𝐻 (C,P, 2𝑙) ≤ log
𝛿
4
+ 𝜖2𝑙

4
. It holds for both

Constrained Energy Model and unconstrained model. Then we use

superscript (c) to denote constrained model and (u) for the uncon-

strained model. Then based on Theorem 1, since we are interested

in minimal sample complexity, we let 𝑛 = 𝑁𝑝 ( 𝜖𝑟
2
) 𝑑 ln(2

√
𝑑𝜌2/b)

b2
.

Based on Assumption 1, we know that the term 𝑁𝑝 ( 𝜖𝑟
2
) is the

same in both constrained and unconstrained cases. In the con-

strained case, the dimension 𝑑 = 2𝑁 + 1; for unconstrained learn-

ing, 𝑑 = 3𝑁 . We have 𝑛 (𝑐) < 𝑛 (𝑢) and b (𝑐) > b (𝑢) . Then 𝑛 (𝑐 )

𝑛 (𝑢) =

2𝑁+1

3𝑁
· ln(2

√
2𝑁+1𝜌2/b (𝑐 ) )

ln(2
√

3𝑁𝜌2/b (𝑢) )
·
( b (𝑢)
b (𝑐 )

)
2

< 2𝑁+1

3𝑁
. Proved. □

B MORE DETAILS ABOUT EXPERIMENT
B.1 Implementation Details
In this section, we describe the implementation details to enhance

reproducibility. We include neural network architectures, the setup

of hyperparameters and software/hardware configurations.

First, we describe the neural networks’ architectures. The setup

of the equivariant graph neural network (EGNN) follows [43]. The

latent dimension of EGNN is 𝑑 = 100 (Equation 10). The number

of layers in the EGNN is set to 𝐿 = 5. The hidden dimensions

of two-layer MLP (multiple-layer perceptrons, including 𝜙𝑒 (·) :

𝑅2𝑑+1 −→ 𝑅𝑑 ;𝜙𝑥 (·) : 𝑅𝑑 −→ 𝑅;𝜙ℎ (·) : 𝑅2𝑑 −→ 𝑅𝑑 in Equation 10) are

set to 50, where the Swish activation function is used to provide

non-linearity in hidden layer of MLPs [38]. In the output layer of

MLP, different activation functions are leveraged. 𝜙𝑒 (·) and 𝜙ℎ (·)
use Swish activation function; 𝜙𝑥 (·) uses Tanh activation function.

These setups follow [43]. Sum function is leveraged as a readout

function to aggregate the node-level embeddings into 3D graph-

level embedding. The batch size is set to 32. The model is trained

for 10 epochs using the Adam optimizer with a learning rate 10
−4
.

On each generation task (H1, H2, H3), we generate 10K CDR

loops and evaluate their VR (validity rate), PPL (perplexity), and

Div (Diversity). When evaluating geometric graph metrics RMSD,

for each tested CDR loop in the test set, we select the CDR loop

that has the smallest RMSD with the test CDR loops from the set

of all generated CDR loops and report the RMSD.

Finally, we describe the software/hardware configuration. Our

method is implemented using Python 3.7, Pytorch 1.7. Both training

and inference procedures are conducted on NVIDIA Pascal Titan X

GPU. For each tasks (H1, H2, H3), the training procedure can be

finished in 10 hours.

B.2 Implementation Details of Baseline
methods

In this section, we describe the implementation details about base-

line methods. All these baselines are state-of-the-art approaches in

antibody design. We use the default setup following the original

paper. (1) Reference evaluates the metrics of real CDR loops in

the test set as reference. (2) LSTM [1, 42] leverages LSTM (long

short-term memory) to generate the amino acid sequence in an

autoregressive manner and does not model 3D structure. Follow-

ing the original paper, it is trained by the Adam optimizer and a

learning rate of 0.01. Dropout rates were chosen from 0.1 and 0.2 to

regularize all layers. The number of layers in LSTM is 3. The hid-

den dimension of LSTM is set to 256. (3) GA (genetic algorithm)
starts from a population of CDR loops. Given the data in the cur-

rent population, to generate offsprings for the next generation, we

leverage the following two operations: (i) crossover (switching sub-

sequence between two loops) and (ii) mutation (randomly changing

one amino acid) to produce a new candidate in each iteration [28].

The population size of GA is set to 100, the number of generations is

set to 1K, which is sufficient for GA to converge. In each generation,

when producing the offsprings, we generate 1K offsprings, where

half of them are produced through crossover operation, half are pro-

duced through mutation operation. We use perplexity as the oracle

to select the most promising offspring for the next generation. (4)
IR-GNN (Iterative refinement graph neural network) was pro-
posed for 3D antibody CDR design [21]. It first unravels amino acid

sequence and iteratively refines its predicted global structure. The

inferred structure, in turn guides subsequent amino acid choices.

Following their original paper, for the GNN, both its structure and

sequence MPN have four message passing layers, with a hidden

dimension of 256 and block size b = 4. It is trained by the Adam

optimizer with a dropout of 0.1 and a learning rate of 0.001. (5)
AR-GNN (auto-regressive graph neural network) [30, 53] was
originally proposed for small-molecule generation and was adapted

for antibody CDR design [21]. Different from IR-GNN that uses

an iterative refinement mechanism, AR-GNN generates the amino

acid sequence and 3D structural graph in an autoregressive manner.

Following [21, 30, 53], Adam optimizer with a dropout of 0.1 is

used with a learning rate of 0.001. (6) EBM (vanilla energy based
model) is the vanilla (i.e., unconstrained) energy based model [27]

that does not consider constraints and does not use constrained

manifold M. It use the same neural architecture with the CEM. The
other setups are the same as CEM (Section B.1). It can be seen as an

ablation study that explores the empirical effect of the constrained

manifold on performance.
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