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Abstract—Due to great success of deep learning in speech
recognition, there has been interest of applying deep learning
to speaker verification. Previous investigations usually focus on
using deep neural network as new classifiers or to extract speaker
dependent features. They are either not compatible with existing
speaker verification approaches, or not able to achieve significant
performance gain in large scale tasks. Also, all the previous
approaches have not addressed the issue of how to make use
of extra unsupervised data. This paper proposes a novel feature
engineering approach within the deep learning framework for
speaker verification. Hidden layer output of deep neural network
or deep belief network trained on large amount of speech
recognition data are extracted as deep features. These features
are then used in a Tandem fashion or concatenated with the
original acoustic features for GMM-UBM speaker verification.
The proposed approach can make use of large amount of existing
speech recognition data without speaker labels and is easy to be
combined with other mature classification approaches. Experi-
ments on the core condition of NIST 2006 SRE showed that, in a
text independent task, the proposed approach can achieve 12.8%
relative EER improvement compared to the standard GMM-
UBM systems. In addition, text-dependent speaker verification
experiments were also performed and yielded similar significant
gain.

I. INTRODUCTION

Speaker recognition is a form of biometric personal recog-
nition. Since everybody has his or her unique voice, in speaker
recognition discrete feature vectors from people’s voices
through several steps of signal processing are extracted and
are used to recognize speaker ID via subsequent modelings.
Usually there are two modes of recognition: verification and
identification. Speaker identification aims at identifying who
is the speaker while speaker verification focuses on whether
the claimed speaker is the true speaker, a yes or no problem.
In this paper, only speaker verification is discussed. In order
to distinguish whether the speech is truly said by the claimed
speaker, the speaker’s speech needs to enroll in advance which
is called enrollment data. And the speech to be distinguished
is called test data. According to whether the text of test
speech is the same as that of enrollment speech, two kinds
of speaker verification systems are involved: text-dependent
and text-independent. Since text-dependent speaker verification
systems strictly constrain the speech text of speaker, it is easier
to recognize than text-independent systems and the accuracy
of the recognition result is higher. In order to strengthen
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our conclusion, both of text-dependent and text-independent
speaker verification experiments will be carried out.

In generally, speaker verification consists of three stages:
frond-end feature extraction, modeling, and back-end scoring
or classification. In the front-end cepstral feature extraction,
mel-frequency cepstral coefficients (MFCCs) are usually used.
But in our experiments features represented by perceptual
linear prediction (PLP) coefficients were found to obtain
better recognition results. Hence, PLPs were adopted as the
acoustic features in this paper. Widely studied speaker model-
ing approaches include Vector Quantization (VQ) model [1],
Gaussian Mixture Model (GMM) [2], Support Vector Machine
(SVM) [3], Artificial Neural Networks (ANNSs) [4] et.al. Over
the past decades, GMMs have been the dominant approaches
for modeling speakers. A series of creditable methods are
GMM-based: Gaussian Mixture Model-Universal Background
Model (GMM-UBM) [5], Joint Factor Analysis (JFA) [6] and
i-Vector [7]. In the back-end scoring or classification method,
likelihood ratios and SVMs are usually used. Cosine Distance
classifier is also put forward along with the advent of i-Vector.
Although JFA and i-Vector have demonstrated the state-of-
the-art performance for text-independent speaker recognition
in the NIST speaker recognition evaluations (SREs) [7][8],
they are complicated and all based on GMM modelling with
conventional acoustic features. Since feature engineering is the
focus of this paper, GMM-UBM is adopted as the primary
modelling approach here. It is worth noting that the proposed
deep features can easily fit into the JFA or iVector framework
in the future.

In the early years of speaker recognition research, neural
network has been applied to speaker recognition tasks as a
classifier or to strengthen other classifiers [9][10]. Similar
ideas have been extended in recent years. In [11], one neural
network with feature after Z-norm is trained for each speaker
for verification; in [12], hierarchical neural network is used
to improve performance. These approaches all require some
forms of speaker-specific network to be trained and are usually
not easy to scale up to tasks with large number of speakers.
Another category is to use neural network to help the extraction
of i-Vector [13][14][15][16]. These approaches are usually
complicated and the gain sometimes is limited [14]. Using neu-
ral network to extract Tandem features is an effective approach
in speech recognition [17]. Motivated by this, researchers have
also tried to use speaker id as the target to train neural network
based feature extractor [18]. However, the performance gain
is not significant and is hard to reproduce. In this paper, a
novel deep feature extraction approach is proposed. To take
advantage of large amount of speech recognition data, features



are extracted from RBM or DNN trained for large vocabulary
continuous speech recognition. Output of hidden layers from
the neural networks are used as the raw features. These features
are processed in a Tandem way as in speech recognition.
The extracted Tandem features are then concatenated with the
original acoustic features to form a new frame-level features.
Once the new features are obtained, they can be used with any
classifiers. In this paper, GMM-UBM framework is adopted
for the experiments. To our best knowledge, this is the first
systematic study of using deep Tandem features for speaker
verification.

The structure of this paper is as follows. Section II reviews
the basic concepts and procedures of GMM-based speaker
verification and DNN and RBM. Section III describes motiva-
tions and details of the proposed approaches. Section IV gives
detailed description of experiments and section V concludes
the whole work.

II. REVIEW OF MAINSTREAM GMM-BASED METHODS IN
SPEAKER RECOGNITION AND DEEP LEARNING

In this section, firstly traditional feature extraction pro-
cedures are described. Then popular GMM-based approaches
like adapted universal background model (GMM-UBM)), joint-
factor analysis, i-Vector are briefly introduced. The fundamen-
tal principals will be stated and basic formula will be listed.
Besides, the basic concepts and theories of DNN and RBM
will also be reviewed.

A. Short-term spectral feature extraction

It is important to extract feature vectors from each speech
frame which can capture the speaker’s specific characteristic.
Usually short-term spectral features are extracted in speech and
speaker technologies, as is known that speech signal changes
continuously. Within a short time about 20-30ms, it is assumed
to remain stationary. In speech and speaker fields, speech is
cut into short frames usually about 10ms and the feature vector
is extracted from each frame.

Generally before signal transforming, the frame is pre-
emphasized and multiplied by a smooth window function such
as hamming. The window function is needed because of the
finite length of the discrete Fourier transform (DFT). DFT
decomposes the speech signal into frequency components and
usually only the magnitude spectrum is retained. Then band-
pass filters is got with energy integration over neighboring
frequency bands.

Although the sub-band energy values are a kind of features,
usually they are further transformed into a lower dimensional-
ity feature, the so-called mel-frequency cepstral coefficients
(MFCCs). MFCCs are widely used in speech and speaker
recognitions and were introduced in early 1980s for speech
recognition and then adopted in speaker recognition [19].
Through decades MFCCs are all the way the first priority
features in speaker technologies. MFCCs can be further trans-
formed into another feature,called perceptual linear prediction
(PLP) coefficients. In our previous experiments, it has been
found that PLP features yielded slightly better results than
MFCC features. Hence, in this paper, PLP is used as the basic
acoustic feature.
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B. GMM-UBM based speaker verification system

In recent years, GMM-based approaches have received
considerable attention in speaker verification. A widely ac-
cepted approach is the classical Maximum A Posterior
(MAP) adaptation of Universal Background Model (UBM)
parameters(GMM-UBM)[5]. The GMM-UBM approach for
speaker verification consists of three stages. Different stages
require different type/amount of data.

1) UBM Training: Each speaker can be modeled as a
GMM model using feature vectors extracted from his or her
speech. But in general for a single person, there is not that
much data enough to train a complete GMM which covers
this person’s all possible speech data he or she would say.
Thus a speaker-independent background GMM model trained
with data from large amount of speakers which represents the
general speaker independent distribute of speech acoustic fea-
tures, called UBM, is needed. The UBM parameter is trained
with the iterative Expectation-Maximization (EM) algorithm.
This stage normally requires large amount of unlabelled data.

2) Enrollment stage: In this stage, the target speaker
model is derived by adapting the parameters of UBM using
the target speaker’s enrollment speech and a form of Bayesian
adaptation which is known as Maximum a Posteriori (MAP)
adaptation as figure 1 shows. This adaptation is similar to
EM algorithm and is identical to EM in the first step. But in
the second step, unlike the EM algorithm, the new sufficient
statistics estimates are combined with sufficient statistics from
UBM parameter using a data-dependent mixing coefficient [5].
This adaptation would tune the parameters of GMM mixtures
for the data which can be observed in the speaker’s enrollment
speech and mixtures parameters for those which is not seen in
the speaker’s enrollment speech are kept unchanged, copied
from the UBM. This stage requires as much as possible
speaker-specific data. The output of this stage is a number of
speaker-dependent models. Since the target number of speakers
can be very large, the output model can not be complicated.
Since a GMM model is relatively simple, it is possible to scale
up to large tasks with GMM-UBM.

Training Data
. »

MAP

UBM Speaker model

Fig. 1. The MAP process

3) Test stage: Likelihood ratio decision method is used in
the stage. Given an observation O which represents the feature
extracted from a test utterance , and a speaker .S, there can be
two hypotheses:

Hy : O is from speaker S
H; : O is not from speaker S (1)



Then the decision made is according to the below likelihood
ratio:

_1;., POIHo) _
A= glos S0t = {

>0 accept Hy 2)
< 6 accept Hy

Where P(O|H;),i = 0,1, is the probability of hypothesis
H; being true, which can be represented by computing the
probability density function for O given the target speaker
GMM model or the impostor GMM model. Usually UBM
model acts as impostor model in the test stage. T represents
the number of frames of Observation O.

The whole GMM-UBM framework is shown in figure 2.

Speaker
Model

A A >0 accept

@ L
A <0 reject

Background B
Model

Fig. 2. The GMM-UBM framework

o) Feature
Extraction

C. Factor analysis based speaker verification

With the speech channels becoming increasingly compli-
cated and audios recorded in various of circumstances, many
techniques for channel compensation are applied to speaker
recognition. Joint factor analysis is a model of speaker and
session variability in GMM’s. A GMM is estimated for each
target speaker and attempt to remove the session variability
hence to compensate for inter-session variability and for chan-
nel mismatches between enrollment data and test data [20].
Generally, a speaker utterance is represented by a supervector
(M) which derives from the association of mean vectors of
all mixture components in the speaker GMM. This speaker-
dependent supervector can be decomposed as:

M=m+Vy+Uz+ Dz 3)

Where m is a speaker- and session-independent supervector
generated from UBM. Matrix V and D define speaker sub-
space and U defines a session subspace. The likelihood of a
test speech feature vectors can be computed using the channel-
compensated model (M — Uz).

In i-Vector approach, a single subspace called total vari-
ability is proposed. And new speaker- and channel-dependent
GMM supervector is redefined as:

M=m+Tw (4)

Where T is a low rank variability matrix of speaker and
session and the total factors w is called i-Vector. I-Vectors
are considered as front-end low dimension features and a
fast scoring method of deciding whether two utterances come
from the same person is comparing the angle between the
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two utterances’ i-Vectors (Cosine Distance classifier) to a
threshold:
<wl,w2 >

SCOT@(’LUI,U)2) = W (5)

From the above, either JFA or i-Vector are based on
GMM models with standard acoustic features. Hence, any new
features which are compatible with GMM models, can also be
incorporated into JFA and i-Vector. Since in this paper, the
focus is deep feature engineering, JFA and i-Vector will not
be further tested.

D. Deep Neural Network and Restricted Boltzmann Machine

In the year 2006, Hinton proposed a deep learning al-
gorithm of neural network, which made it possible to train
neural networks of at least 7 hidden layers. And the multi-layer
neural network is called Deep neural network. Deep learning
exhibits strong representational power to nonliear modelings
[21]. Recently, DNN is widely used in automatic speech
recognition as well as many other fields in machine learning.
Context-Dependent Pre-trained Deep-Neural-Network HMMs,
or CD-DNN-HMMs hybrid model [22], achieved a dramatic
performance for large vocabulary continuous speech recogni-
tion (LVCSR) and becomes the state-of-the-art method and
attract prodigious attention.

DNN-HMM is taking the prime place of GMM-HMM
in recent acoustic modeling research work. DNN-HMM can
automatically model the long-span deep features while GMM-
HMM is more stable and robust.To take the convenience
of both, several methods which extract features from deep
neural network and use the features in GMM-HMM acoustic
modeling have be proposed, such as, tandem method [23] uses
posterior probability which is the output of the last soft-max
layer in DNN, or weighted sum of the output in last hidden
layer, bottleneck-feature [24] method forcedly sets a bottleneck
in the middle of DNN and uses the weighted sum of output
before the bottleneck layer. However, none of this kind of
approaches has shown an outperformed result than the best
DNN-HMM, until a so-called scalable approach [25] has been
proposed, which contains three stages as following, training a
DNN feature extractor, deriving features with DNN, modeling
DNN-derived features with GMM-HMM model.

In DNN-HMM modeling in speech recognition, DNN is
trained using cross entropy criterion according to the force
alignment of frame level state prediction from the state-of-art
ASR system. Hence, DNN is a supervised training approach.
In the extracting stage, all the data are fed into the DNN to get
the weighted sum of the output before the last hidden layer.
After that, principal component analysis are used to project
the high dimensional DNN output into a low dimensional
space, and then cascaded with original spectral features which
is the DNN input. In the application stage, the spectral and
DNN-derived tandem features are directly put into the well-
tuned conventional GMM-HMM ASR system to get a better
performance compared to both DNN-HMM and GMM-HMM
system.

Since DNN employs supervised training, the derived fea-
tures are regarded as supervised feature which reflects the
property of training labels (target). For speech recognition,



the features are inclined to discriminate between phones or
context-dependent phone states. In contrast, deep belief net-
work is an unsupervised approach to train neural networks. It
is usually constructed as the initial network for DNN training
using the stack of Restricted Boltzmann Machine (RBM).

Restricted Boltzmann Machine derives from Boltzmann
Machine, a bidirectionally connected network of stochastic
processing units, inheriting its merits on learning important
aspects of an unknown probability distribution based on sam-
ples from distribution [26].

A hidden layer

v visible layer
Fig. 3. Restricted Boltzmann machine

RBM is an undirected model, one being visible layer (v)
and the other hidden layer (h). In graph theory it can be
regarded as a bipartite graph, as the figure 3 shows, each edge
in the bipartite graph being attached with a weight, noted as
a matrix W.

Suppose RBM system has n vertexes in visible layer and
m vertexes in hidden layer. vector h and v stand for the state
in hidden layer and visible layer respectively, among which h;
and v; stand for the state of the ¢ — th vertex in hidden layer
and the state of the j — th vertex in visible layer. Then the
energy of the RBM is defined as follows:

E(V, h|0) = — Z a;v; — Z bjhj - Z Z ’UiWijhj (6)
=1 j=1

=1 j=1

The joint probabilistic distribution shown in (7) can be
infered from the formula above, among which Z is called
partition function and only relevant to the parameter which

is needed to estimate:
e—E(v,h|0)
p(v,hl|f) = 70 (M

Z(0) =Y e BRI (3)
v,h

To determine this distribution, the partition function is
needed to computed, which need exponential time compu-
tation, above usual ablility. Thus, these parameter instead
of direct computation, including a;, b;, W;; can only be
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estimated. And what is useful to us is only the marginal
distribution of v, which can be represented as:

p(v]6) = ﬁ S eEH (9

The activation state of the hidden vertex only depends on
the vertex in the visible layer,

n
P(h; = 1|v,8) = sigmoid(b; + Z%’Wij) (10)
i=1

and vice versa for symmetry.

P(v; = 1|h,0) = sigmoid(a; + Y _ h;W;;) (11)

=1

It can be seen that each layer is related only with the
previous layer and the whole procedure can be regarded as
layer-wise train. Since the training does not require any label
information, the derived features is considered as unsupervised
features.

III. DNN AND RBM AS FEATURE EXTRACTORS IN
GMM-UBM SPEAKER VERIFICATION SYSTEMS

A. Previous research on using neural network for speaker
verification

Due to the significant performance of DNN achieved in
speech recognition, research of applying DNN to speaker
verification has drawn special attention. There are mainly two
ways to apply deep learning to speaker verification: model-
based or feature-based.

Most model-based approaches employ neural network as
a classifier or to strengthen other classifiers [9][10]. Model
based approaches normally require speaker-specific network to
be trained, which means for each test speaker, there will be a
distinct neural network or similar parameters. Due to the sparse
enrolment data, the estimation of the speaker-specific neural
network or parameters is not robust. Several approaches are
applied to address this issue, for example, in [12], hierarchical
neural network is used. Or in i-Vector based approaches, the
number of the estimated parameters (i-Vector) is kept small
[14][15]. However, the performance gain from model-based
approach has not been shown to be significant unless very
complicated models are used [14][15].

Feature-based approaches employ deep learning to extract
compact and representative features for speaker verification.
When using supervised deep feature, there is an issue of what
labels to choose as the target for training DNN. Early in
the year 1998, Konig [27] tried to use bottleneck features to
build GMM-UBM system. Neural network was trained with
a bottleneck layer as the middle hidden layer. The input is
expanded context-frame feature vectors and the output label
is speaker id. The extracted bottleneck features are used to
build GMM-UBM speaker verification systems. Experiment
results showed that although separate bottleneck-feature-based
systems performed worse than the original-feature-based sys-
tems, the performance exceeded them after back-end scoring



linear combination of the bottleneck-feature-based and the
original-feature-based systems. Similar idea was enhanced in
[18] and showed slight gains. However, the results can not be
reproduced by us. To our knowledge, there has not been works
on using phone labels to train the neural network features for
speaker verification, although they are widely used in speech
recognition. As for unsupervised neural network, there has not
been reports on using them for feature extraction in speaker
verification.

B. Deep Tandem Features for Speaker Verification

As indicated before, deep learning has achieved significant
gains within the DNN-HMM framework in various speech
recognition tasks [28]. Motivated by the Tandem feature pro-
cessing in speech recognition, in this paper, Tandem deep
features are proposed to be used for speaker verification. Two
types of deep features are investigated as below:

1) Supervised deep feature: DNN Tandem feature: In
this paper, deep neural network, which is widely used for
speech recognition, is used to extract tandem features to apply
in GMM-UBM speaker verification systems. Figure 4 displays
the structure of the our work. We do so because of following
reasons. As far as we know, much audio data with text labels
can be obtained for speech recognition while a great deal of
data is lack of information about speakers. Further more, the
input nodes of DNN are expanded multi-frame features, which
can carry more reliable information and more distinguishable.
The phone-dependent network also carries speaker information
and in that way is speaker-dependent. Of course, the layer
nearer to the output layer is less speaker-dependent because the
speaker information is omitted to be phone-dependent. Thus,
the performance of features from the last hidden layer is worse
than that of features from the middle hidden layer. Experiments
will be set up to confirm this.

Output
Layer

Speaker Model
o 0 0 O I
A . FCa UBM Model

h @& & & -

Input Wi
layer

Fig. 4. The framework of speaker verification with deep features

2) Unsupervised deep feature: RBM Tandem feature:
As unsupervised RBM models the input features to more
regular and discriminative features, and unlike speech DNN
tuned by back propagation, it is not more phone-oriented,and
also its inputs are multi-frame features, we believe that RBM
feature extractor is more applicable. The Tandem processing
of the RBM features is similar to that of DNN.

Once the Tandem deep features are extracted, they can
be combined with the original acoustic features at either
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front-end feature level or back-end score level. At feature
level, Tandem features are simply concatenated to the original
acoustic features. At score-level, two systems with Tandem and
original acoustic features are built separately and the scores
from the two systems are weighted averaged to form the
final score for classification. Experiments of both combination
approaches will be investigated.

IV. EXPERIMENTS

To evaluate the performance of the proposed approach, ex-
periments of both text-independent and text-dependent speaker
verification were performed. First, text-independent experi-
ments on NIST Speaker Recognition Evaluation (SRE) data
were carried out.

A. Experimental Setup and Baseline

1-conversation data from NIST 2005 SRE was chosen for
the UBM training data and only the male data was used.
Each audio is a five-minute telephone conversation between
two speakers, containing roughly two minutes of speech after
removing unvoiced segments by voice activity detection (VAD)
for each speaker. In total, there are about 9 hours of data
consisting of 274 speakers. Evaluation was carried out on the
core condition of NIST 2006 SRE. The characteristics of this
data is similar to that of NIST 2005 SRE and also only the
male data was chosen. There are about 352 target speakers with
two minutes of speech for each person and 645 test audios.
The total number of tests is 10037.

13-dimension PLP coefficients were extracted at every
10ms for the baseline system. Then, the first and second deriva-
tive were calculated to form a 39-dimensional feature. The
PLP segments belonging to the same person were concatenated
together to an integrated feature file after VAD. Mean and
variance normalization were applied to each file.

First, a universal background model (UBM) was trained
with NIST 2005 SRE containing 512 Gaussian mixtures. Then,
352 target speaker models were trained using standard MAP
adaptation on top of the UBM with the enrollment data from
NIST 2006 SRE (enrollment data are different from test data
although from the same speaker). In the test stage, each test
file will get two sets of average log likelihood scores per
frame using the target model and the UBM model respectively.
Then the final score is calculated as the difference of the two
scores. With different threshold of the final score, it is possible
to obtain a number of different false acceptance or rejection
errors. False rejection rate represents the proportion of true
speakers being incorrectly rejected and false acceptation rate
indicates that of impostor speakers being incorrectly accepted.
The evaluation metric being used was Equal Error Rate (EER)
which is the error rate where false rejection rate equals false
acceptance rate. The baseline system, i.e. GMM-UBM with
PLP features, yielded an EER of 11.18%.

B. Text-Independent Speaker Verification with Deep Features

As indicated before, deep features from existing speech
recognition system can be borrowed for speaker verification.
The data used for training the DNN and RBM was a 309-
hour switchboard English data set [29]. It consists of 4869
speakers which are different from the NIST SRE data. Since



the DNN and RBM were trained on large amount of data, it is
possible to get better deep feature representation using these
deep networks.

Both DNN and RBM have 7 hidden layers with 2048
nodes per layer. The input layer has 429 nodes with 11 PLP
feature frames (Each frame was expanded to 11 frames with
the left and right 5 frames). The output layer has 9296 nodes
corresponding to 9296 tri-phone states. The DNN was trained
on top of the RBM using back-propagate algorithm with cross-
entropy objective function, along with a L2-norm weight-decay
term of coefficient 10~6. Hence, DNN generated phone related
supervised deep features while RBM generated unsupervised
deep features.

1) Projection Dimension of Deep Features: The expanded
39-dimensional PLP features were passed through the network
(RBM or DNN) and generate 2048-dimensional new features
at each layer of the network. After applying PCA projection
to the 2048-dimensional feature, a new low-dimension tandem
feature was obtained and after mean and variance normal-
ization the final low-dimension tandem feature was obtained.
As the dimension reduction process is a common practice in
speech recognition, it is useful to first investigate the effect of
dimensionality. The performance of deep feature extracted at
layer 7 with different dimensions are shown in table I:

TABLE I.  EER (%) OF DEEP FEATURES OF DIFFERENT DIMENSIONS
AFTER PCA
[ Dimension[] RBM | DNN ]
20 11.17 15.54
39 10.33 15.69
78 12.19 14.82

It can be observed that there is no consistent performance
change trend on dimensions. With appropriate dimension (20
or 39), unsupervised deep feature (RBM feature) already out-
performed the PLP baseline system (11.18%). The supervised
deep features (DNN feature) showed worse performance and
larger dimension did not help much. To achieve the best
performance, 39 dimension was used in later experiments.

2) Combination of PLP and Deep Features: Although deep
features can yield performance gain as shown in the previous
section, the gain is small. It has been observed that the errors
of the PLP baseline and the errors of the systems with deep
features have different patterns. This implies that combination
of the two systems may be helpful. There can be two ways
of system combination. The first is feature-level combination,
i.e. concatenating the original PLP feature and the deep tandem
features to form an augmented feature. The second is score-
level combination. Two scores of a test speech from the
deep-feature GMM-UBM and PLP-feature GMM-UBM were
linearly added together with a weight. The weight of the better
score was set 0.7 and that of the worse score 0.3. The two
combination approaches were investigated with the same setup
as the previous section. The results are shown in the below
table.

From table II, all system combination approaches obtained
significant performance improvement and outperformed the
baseline PLP system. Score-level combination is more effec-
tive for the DNN feature, while feature-level combination is
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TABLE IL EER (%) OF SYSTEM COMBINATION

System Single Combined System

y System Feature | Score
PLP 11.18 — —
+ DNN 15.69 11.03 10.74
+ RBM 10.33 10.02 10.31

more effective for the RBM feature. The best performance
is still from systems with unsupervised features. Feature-level
combination will be used in later experiments.

3) Deepness of Features: There has been an assumption
that ”deep” is an important factor to achieve good performance.
It is then interesting to investigate the performance of features
from different layers of DNN or RBM. The same experimental
set up as the previous section was used. Performance of the
systems with feature-level combination is shown in table III.

TABLE III. EER (%) OF SYSTEMS WITH FEATURES FROM DIFFERENT
LAYERS
[ #Layer | RBM | DNN ]
1 10.16 10.31
2 10.02 10.32
4 9.75 10.45
7 10.02 11.03

From table III, all combined systems obtained significantly
better performance than the PLP baseline. However, for su-
pervised feature, deep features are not necessarily better than
shallow features. The deeper the network is, the worse the
performance is. This might be because that DNN was tuned to
phone state posteriors while the aim of speaker verification is
to discriminate between speakers. In contrast, deeper feature
obtained better performance for the unsupervised RBM fea-
tures. It is interesting to note that the best performance was
actually achieved in the middle layer. This implies that deep
is not always useful. Nevertheless, table III has shown the
power of incorporating deep features into speaker verification.
Compared to the PLP baseline, the best deep feature sys-
tem obtained about 12.8% relative performance improvement,
which is significant.

C. Text-dependent Speaker Verification with Deep Features

To strengthen the reliability of our judgments, experiments
of text-dependent speaker verification systems were also per-
formed on a Chinese task. About 12.5 hours mobile audio data
were chosen as the training data to build a 512-mixture GMM-
UBM system. 51 target speakers were chosen to be enrolled.
In the enrollment stage, there were only 3 utterances of the
same text to be recorded for each speaker, each about just 3
seconds. In the test stage, each speaker had 7 test utterances,
which consist of 1 true utterance and 6 impostors’ utterances.
Among the 6 impostors’ utterances, 2 utterances were said by
the true speaker but the texts were different from this speaker’s
enrollment utterances, 2 utterances were said by impostors
but the texts were the same as the enrollment utterances, and
2 utterances were from impostors with texts different from
enrollment data. There were 7140 test files in total.

In this experiment, the best setup from the pervious section
was used for deep feature extraction. From table IV, similar



TABLE IV. EER (%) OF TEXT-DEPENDENT SPEAKER VERIFICATIONS

SYSTEMS WITH DEEP FEATURES

| System [ EER
PLP 0.98

+ RBM 0.88

+ DNN 0.98

trends can be observed that supervised deep features performed
worse than unsupervised features. Even with combination,
PLP+DNN system still did not outperform the baseline. This
might be because the equal error rate of the baseline is already
very low. However, in contrast, combined systems with RBM
features can still significantly outperform the PLP baseline. It
is worth noting that, with a good PLP baseline, performance
improvement is hard. This again shows that unsupervised
deep features can yield better and complementary feature
representation for speaker verification.

V. CONCLUSIONS

This paper proposes a novel approach to extract deep
features for speaker verification. Well trained DNN and RBM
in speech recognition are employed as the feature extractor,
which shows the potential of using extra large amount of data.
Tandem features are then extracted and combined with original
acoustic features. The proposed approach is compatible with
most existing speaker verification algorithms and is easy to
apply. Experiments showed that, within a GMM-UBM frame-
work, GMM-UBM with unsupervised deep features achieved
signifiant performance improvement compared to the standard
GMM-UBM approach in both text dependent and text in-
dependent tasks. The gain reported is a lot more significant
than previous neural network based speaker verification. In the
future, we will investigate how to apply deep features to more
complex speaker verification framework such as i-Vector.
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