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Abstract

Recently deep learning has been successfully used in speech recognition, however it has not been carefully explored and widely
accepted for speaker verification. To incorporate deep learning into speaker verification, this paper proposes novel approaches of extract-
ing and using features from deep learning models for text-dependent speaker verification. In contrast to the traditional short-term spec-
tral feature, such as MFCC or PLP, in this paper, outputs from hidden layer of various deep models are employed as deep features for
text-dependent speaker verification. Fours types of deep models are investigated: deep Restricted Boltzmann Machines,
speech-discriminant Deep Neural Network (DNN), speaker-discriminant DNN, and multi-task joint-learned DNN. Once deep features
are extracted, they may be used within either the GMM-UBM framework or the identity vector (i-vector) framework. Joint linear dis-
criminant analysis and probabilistic linear discriminant analysis are proposed as effective back-end classifiers for identity vector based
deep features. These approaches were evaluated on the RSR2015 data corpus. Experiments showed that deep feature based methods
can obtain significant performance improvements compared to the traditional baselines, no matter if they are directly applied in the
GMM-UBM system or utilized as identity vectors. The EER of the best system using the proposed identity vector is 0.10%, only one
fifteenth of that in the GMM-UBM baseline.
� 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Speaker verification is the identification of the person
who is speaking by characteristics of their voices (voice bio-
metrics), and the relative technologies have reached matu-
rity and been deployed in commercial applications in recent
years. According to whether the text of test speech is the
same as the one in the enrollment stage, there are two types
of speaker verification tasks: text-dependent and
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text-independent speaker-verification. Since text-dependent
speaker verification systems strictly constrain the speech
phrase of a speaker and the knowledge of the lexicon is
integrated in the modeling, the verification result is much
more accurate compared to text-independent systems and
the application is much safer. Besides, in many real scenar-
ios, the duration of the user speech is usually short and
text-independent verification is not robust. Accordingly
the text-dependent speaker verification is more appropriate
to be implemented in real applications to obtain an accu-
rate verification result. This is also the research focus of
this work.

In general, speaker verification system construction con-
sists of three stages: frond-end feature extraction, modeling,
and back-end scoring or classification. In the first step,
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spectral based features are extracted, for example
mel-frequency cepstral coefficients (MFCCs) or perceptual
linear prediction (PLP) coefficients are widely used as the
front-end cepstral features. Then various approaches are
applied to build models,such as Gaussian Mixture Model
(GMM) (Reynolds, 1995), Support Vector Machine
(SVM) (Campbell et al., 2006) and so on. In particular,
GMM-based methods, such as the classical Gaussian
Mixture Model-Universal Background Model
(GMM-UBM) (Reynolds et al., 2000) and the
state-of-the-art i-vector (Dehak et al., 2011) approach,
are most popular for speaker modeling.

Neural network has been applied to speaker recognition
for a long time. In early years, it is used as a classifier or to
strengthen other classifiers (Farrell et al., 1994; Wouhaybi
and Adnan Al-Alaoui, 1999). Similar ideas have been
extended in recent years. In (Turajlic and Bozanovic,
2012), one neural network with feature after Z-norm is
trained for each speaker for verification. In (Ghosh et al.,
2004), hierarchical neural network is used to improve per-
formance. All these approaches require some forms of
speaker-specific networks to be trained and are usually
not easy to scale up to tasks with large number of speakers.
Another category is to use the neural network to assist in
the i-vector extraction (Senoussaoui et al., 2012; Burget
et al., 2011; Vasilakakis et al., 2013; Thomas et al., 2012).

In recent years, deep learning, especially deep neural
network (DNN), became a hot research topic in machine
learning and achieved a breakthrough in speech recogni-
tion (Hinton et al., 2012), however it has not been widely
accepted for speaker verification. Some systems were pro-
posed (Variani et al., 2014), but did not achieve the best
single system performance. Considering that the DNNs
possess strong capability of nonlinear modeling representa-
tion (Le Roux and Bengio, 2008), it is believed that deep
neural networks can be a better choice to extract discrimi-
native features. In this paper, the use of deep models,
including DNNs and deep RBM, is investigated in detail
for text-dependent speaker verification. Deep features
extraction using deep structures are proposed to improve
the text-dependent speaker verification system.

The remainder of this paper is organized as follows.
Section 2 reviews the developments of text-dependent
speaker verification and the popular technologies used in
this task. Section 3 and 4 describe the proposed deep fea-
ture extraction approaches and the back-end classifier con-
struction. The detailed experimental results and
comparisons are presented in Section 5 and the whole work
is summarized in Section 6.

2. Text-dependent speaker verification

Throughout the history of speaker verification, from
nonparametric template matching methods such as
Dynamic Time Warping (DTW) (Yu et al., 1995) and
Vector Quantization (VQ) (Burton, 1987) to parametric
modeling methods such as Gaussian Mixture Model
(GMM), Hidden Markov Model (HMM) (Larcher et al.,
2012b; Matsui et al., 1996), Artificial Neural Network
(ANN), and most recently Deep Neural Network (DNN)
(Variani et al., 2014); from the simple and clear data envi-
ronments to more complicated noisy environments, the
technologies of speaker verification show considerable
advanced developments. Text-dependent speaker verifica-
tion constrains the speech phrase in the enrollment stage
the same as the phrase in the test stage, and it performs
much better than text-independent speaker verification.
The constrain of phrases makes the verification more accu-
rate, because the decision can be made by only analyzing
how a speaker produces the text-specific sounds rather than
requiring to compare among different speakers over large
lexical variations.

Text-dependent speaker verification needs to focus on
both speaker characteristics and lexical contents. Early
works usually utilized DTW, a dynamic programming
method, which aligns two sequences of different lengths
and performs the temporal template matching (Furui,
1981). But this frame level alignment is computationally
expensive. Another commonly used model is the hidden
Markov model which typically uses GMMs to generate
sequences of acoustic vectors.

From the year 1996 on, the Speaker Recognition
Evaluations (SRE) are held by National Institute of
Standard and Technology (NIST) every one or two years,
which leads to the fast development of speaker verification
technologies, especially the text-independent systems.
Fortunately most of these techniques proposed for
text-independent speaker verification can also be applied
to text-dependent ones, such as the classical GMM-UBM
(Reynolds et al., 2000), the state of the art system
i-vector (Dehak et al., 2011). Although it does not take into
account the lexical information, GMM-UBM system still
shows a promising performance in text-dependent speaker
verification (Fu et al., 2014). As for the i-vector system, the
direct application on the text-dependent condition is not as
satisfactory as the text-independent ones (Larcher et al.,
2012b). Accordingly researchers should try to find more
advanced and suitable techniques for the text-dependent
speaker verification application. In this paper, the deep fea-
tures extracted from deep models are applied in the
GMM-UBM or identity vector framework to get improved
performances of the text-dependent speaker verification.
The recently popularly used standard
text-dependent-task-oriented RSR2015 database will be
chosen to evaluate all the systems.

2.1. RSR2015 database

RSR2015 data corpus, released by the Human
Language Technology (HLT) department at Institute for
Infocomm Research (I2R) in Singapore, is designed for
text-dependent speaker recognition with scenario based
on fixed pass-phrases (Larcher et al., 2012b). It consists
of three parts, each dedicated to a specific task involving
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different lexical and duration constraints (Larcher et al.,
2014). In this paper Part I is used, which contains about
72 h of audio. It contains audio recording from 300 people,
which include 143 female and 157 male speakers that are
between 17 to 42 years old, and the whole set is divided into
background (bkg), development (dev) and evaluation (eval)
subsets. Among the 300 people, 50 male and 47 female
speakers are in the background set, 50/47 in the develop-
ment set and 57/49 in the evaluation set.

All audios are recorded using three portable devices,
divided into nine sessions. Each session contains thirty
short phrases. The average duration of these audios is
3.2 s. During testing, a speaker is enrolled with 3 utterances
of the same phrase. The corresponding test utterances are
also of the same phrase, however all utterances in a trial
come from different sessions and are taken from the eval set.

The RSR2015 data corpus is well designed and has
become a standard database for text-dependent speaker
verification research, such as (Miguel et al., 2014; Scheffer
and Lei, 2014; Kenny et al., 2014; Fu et al., 2014). The data
configuration in this work is the same as in others (Miguel
et al., 2014; Scheffer and Lei, 2014; Kenny et al., 2014; Fu
et al., 2014).

2.2. GMM-UBM approach

In the category of the classical GMM-based speaker ver-
ification technologies, GMM-UBM plays an important
role. The whole GMM-UBM framework can be shown in
Fig. 1. It consists of three stages.

� UBM training:
A speaker-independent background GMM model, is
trained with data from large amounts of non-target
speakers. It can represent the general
speaker-independent distribution of speech acoustic fea-
tures, and it is called Universal Background Model
(UBM). The UBM parameters are trained with the iter-
ative Expectation–Maximization (EM) algorithm and
require unlabelled data which covers different people,
different lexical contents and different channels.
� Enrollment stage: MAP training

In this stage, the target speaker model is derived by adapt-
ing the parameters of UBM using the target speaker’s
enrollment speech and a form of Bayesian adaptation
Feature
Extraction

Background
Model

Speaker
Model

O MAP

Fig. 1. The GMM-UBM speak
which is known as Maximum a Posteriori (MAP) adapta-
tion. This adaptation would tune the parameters of GMM
mixtures for the data which can be observed in the speaker’s
enrollment speech, and the parameters for those which is not
seen in the speaker’s enrollment speech are kept unchanged
as the UBM. The outputs of this stage are a number of
speaker-dependent models.
� Verification stageLikelihood ratio decision method is

used in the verification stage. Given an observation
sequence O which represents the feature extracted from
a test utterance of a speaker s, there can be two
hypotheses:

H 0 : O is from the target speaker s

H 1 : O is not from the target speaker s
ð1Þ

Then the decision is made according to the likelihood
ratio as below:

K ¼ 1

T
log

pðOjH 0Þ
pðOjH 1Þ

¼
P h accept H 0

< h accept H 1

�
ð2Þ

where PðOjHiÞ; i ¼ 0; 1, is the probability of hypothesis
Hi, which can be computed using the probability density
function for O given the target speaker GMM model or
the impostor GMM model. Usually UBM model acts as
an impostor model in the test stage. T represents the
number of frames in observation O.

The whole procedure of GMM-UBM method is easy to
implement, and it can usually obtain satisfactory perfor-
mance in both text-dependent (Sturim et al., 2002) and
text-independent speaker verification system (Liu et al.,
2014).
2.3. GMM based i-vector approach

The identity vector (i-vector) is developed from the joint
factor analysis (JFA) (Kenny et al., 2007a,b), which is a
model representing speaker and session variability in
GMM’s. In JFA, a GMM is estimated for each target
speaker, and the session variability is removed which helps
to compensate for the inter-session variability and the
channel mismatches between enrollment data and test data
(Kenny et al., 2007a). In general, a speaker utterance is rep-
resented by a supervector (M) which derives from the
Decisition

+

-

>0 accept

<0 reject

er verification framework.
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cascading of mean vectors of all mixture components in the
speaker GMM. This speaker-dependent supervector can be
decomposed as:

M ¼ mþ Vy þ Uxþ Dz ð3Þ

where m is a speaker and session-independent supervector,
generated from UBM. Both matrix V and D define speaker
subspace, and U defines a session subspace. y and x repre-
sent speaker factors and channel factors respectively. Dz
serves as a residual to compensate for the speaker informa-
tion that may not be caught by Vy.

The work in (Dehak, 2009) found that channel factors
also contain speaker information. Thus a single subspace
called total variability is proposed, which is known as the
i-vector approach (Dehak et al., 2011). The new speaker
and session-dependent GMM supervector is redefined as:

M ¼ mþ Tw ð4Þ

where T is a low rank matrix of speaker and session vari-
ability, and the total factor w is called identity vector,
named i-vector. I-vectors are considered as front-end low
dimension features, and normally the cosine similarity clas-
sifier is used to do fast scoring and decision:

Scoreðw1;w2Þ ¼ < w1;w2 >

jjw1jj jjw2jj ð5Þ

where < w1;w2 > is the inner product of two i-vectors and
jjw1jj or jjw2jj the length of the respective i-vector.

Besides a more efficient back-end scoring method called
PLDA (Probabilistic Linear Discriminant Analysis Model)
is proposed (Jiang et al., 2012). It is similar to JFA but
implemented in the i-vector space rather than supervector
space. For a speaker whose i-vectors of all his speeches
are defined as D1;D2; . . . DN , the i-vector Dn (n ¼ 1; . . . ;N )
can be represented as

Dn ¼ lþ U 1x1 þ U 2x2n þ �n ð6Þ

Corresponding with JFA, l is the mean of the speaker’s
i-vector distribution and U 1 and U 2 define the speaker
and session subspace individually.

Now most of the speaker verification systems utilize the
i-vector approach, and this method has become the state of
the art technology in this application (Matejka et al., 2011;
Jiang et al., 2012). However, some work shows that this
traditional i-vector framework may not work well in some
scenarios, especially the text-dependent speaker verification
applications (Larcher et al., 2012a). So more efforts need to
be done in investigating this approach to improve the
whole framework.

3. Deep features extraction using deep models

Both in speech recognition and in speaker recognition,
feature extraction is very important for the system con-
struction. Usually both of them utilize the short-time spec-
tral features despite the completely different task objects
(discriminating phones or discriminating speakers). Some
disadvantages are obvious: (1) The features extracted in a
short time cannot represent sound characteristics of a rela-
tively long duration well, such as speaker identity; (2) The
spectral features are originally designed for speech recogni-
tion, not speaker verification. Although these features
could be used for speaker recognition, they are not opti-
mized for the speaker discrimination, especially for the
text-dependent speaker verification. Accordingly, it is
important and meaningful to explore new features which
are more discriminative and effective for the
text-dependent speaker verification.

Neural networks especially deep neural networks have
powerful nonlinear modeling abilities. In the early years
of speaker recognition research, neural network has tried
to be applied on speaker verification tasks. There are
mainly two ways to utilize the neural network:
model-based or feature-based. Most model-based
approaches employ neural network as a classifier or to
strengthen other classifiers (Farrell et al., 1994; Wouhaybi
and Adnan Al-Alaoui, 1999). Model based approaches
normally require speaker-specific network to be trained,
which means for each test speaker, there will be a distinct
neural network. Feature-based approaches employ neural
network to extract compact and representative features
for speaker verification. When using supervised nonlinear
features, there is an issue of what labels to use as the target
for training neural network. Early in the year 1998, Konig
(Konig et al., 1998) tried to use bottleneck features to build
GMM-UBM system. A neural network was trained with a
bottleneck layer in the middle hidden layer. The input is
expanded context-frame feature vectors and the output
label is speaker id. Experiment results showed that the final
combined system consisting of the spectral feature and the
bottleneck feature systems outperformed the single feature
system, however the individual bottleneck-feature-based
system performed still worse than the baseline spectral fea-
ture based systems. Moreover the bottleneck approach was
enhanced in (Yaman et al., 2012) and showed a slight gain.
In (Chen and Salman, 2011), the unsupervised learning
model autoencoder, which tries to make the output value
equal to the input value and can learn quite good features
from unlabelled data in the reconstruction process, could
extract the discriminative features from the central hidden
layer. However, all of the previous work obtained limited
performance improvements or a little worse than baseline
system.

Due to the recently large performance improvement in
speech recognition by using the deep neural networks,
applying deep neural networks to speaker verification has
drawn special attentions (Fu et al., 2014). Traditional spec-
tral features such as MFCCs or PLPs pass through deep
models and arrive at a specific hidden layer and then pro-
jected new features are obtained. These new features,
whether their dimensions are then reduced or kept, are
called deep features. Focusing on deep feature extraction,
this paper will implement several kinds of deep neural
networks and RBM to extract effective features



Fig. 3. Speech-discriminant deep neural network.
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comprehensively, and then these novel features are applied
in the GMM-UBM framework or directly act as an identity
vector similar as the traditional i-vector framework.

3.1. Deep restricted Boltzmann machines

The training of the generative model RBM is an unsuper-
vised process with the approximate contrastive divergence
algorithm. No label information of data is needed, so very
large amounts of training data can be utilized. Deep RBM
can be adopted as a reasonable feature extractor since it
models input features to more regular and generative
features, shown as the Fig. 2. Considering that no label
information is used in RBM, all speech characteristics
may be represented in the RBM, including phone-level,
speaker-level and channel-level characteristics. Once the
RBM is trained, the original spectral features are fed
through the neural network and the outputs of a particular
hidden layer are extracted. The context information could
also be encoded due to the extended inputs with the left
and right n frames. These unsupervised trained deep features
can be obtained from the different hidden layers of RBM,
which hope to be beneficial for discriminating speakers.

3.2. Speech-discriminant deep neural network

Considering that the task is text-dependent, the text
information should be useful in the modeling phase.
Accordingly deep neural network which is trained for
speech discrimination can be used as another feature
extractor shown as the Fig. 3. Usually there are text labels
(phone/state labels) for the text-dependent training data,
e.g. borrowing from the speech recognition task corpus,
so training a speech-discriminant DNN is feasible. In this
speech-discriminant DNN, the layer close to the output
layer is much more phrase-discriminative and less
speaker-dependent, hence we need to make some trade
off on the hidden layer selection considering both the
phrase and speaker knowledge. To derive this feature
extractor, a DNN is trained in supervised mode using the
...

...

...

...

.....
...

Input 
layer

.....
.....

.....
Hidden 
layers

Deep feature

w1

w2

Fig. 2. Deep restricted Boltzmann machines.
triphone states labels as targets. The RBM pretraining
(Hinton et al., 2006) is used to initialize the neural network.
Then deep features are extracted in a similar way as in the
RBM extractor. Triphone states are closely related to text
information and have been widely utilized for speech
recognition. Considering the task is text-dependent speaker
verification, we believe that using speech-discriminant
DNN should be particularly useful.

3.3. Speaker-discriminant deep neural network

This is a natural choice for speaker verification, as
shown in the Fig. 4. The speaker discriminative ability will
be enhanced in this type of DNN and other information
such as phone variability and channel variability are con-
strained at a relative lower level. As mentioned above,
works in (Konig et al., 1998; Chen and Salman, 2011) have
Fig. 4. Speaker-discriminant deep neural network.
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used this speaker discriminative neural network feature
extractor, however these features are both from the shallow
NN model and they finally performed a little worse than
the traditional spectral features. Speaker-discriminant
DNN, which is also initialized by RBM, is more powerful
in information reconstruction and must be more reliable in
speaker information extraction. This DNN structure is
similar as the speech-discriminant DNN except that the
output classes represent individual speakers.
3.4. Multi-task joint-learned deep neural network

In the scenario of text-dependent speaker verification,
both the discriminative knowledge from the speakers and
the texts are very important. Thus, the combination of
speaker-discriminant DNN and speech-discriminant DNN
is the straightforward thinking. To learn the useful knowl-
edge from different levels simultaneously, a multi-task
joint-learned training process is applied. In other words,
only one network is trained but the target is optimization
on several levels at the same time, shown as the Fig. 5.

The output nodes consist of both speakers and texts.
Here we consider two types of multi-task joint training:
speaker + phrase, speaker + phone. In part I of RSR2015
database, there are 30 distinct phrases spoken by all the
speakers. Hence in the first type of multi-task joint train-
ing, the number of text nodes can be 30. For training data,
each speaker has 270 speeches and each text is spoken by
all the speakers and through all channels. For simplicity
we use the sum of the two original loss function
C1ðy1; y

0
1Þ;C2ðy2; y

0
2Þ as the total loss function:

Cð½y1; y2�; ½y01; y 02�Þ ¼ C1ðy1; y
0
1Þ þ C2ðy2; y

0
2Þ ð7Þ

where C1;C2 are the two cross-entropy criteria for speakers
and phrases. y1; y2 indicate the true labels for speakers and
Fig. 5. Multi-task joint-learned deep neural network.
phrases individually, while y 01; y
0
2 are the outputs of the two

targets respectively. According to the linearity of the gradi-
ent, the gradient of each parameter can be calculated indi-
vidually, and the new parameters on common layers can be
updated by the gradient for the sum of two loss functions.
The learning rate is reduced when the classifying accuracy
of the two tasks is not improving any more. Joint learning
avoids over-fitting for DNN training, and also enhances
the functionality of the DNN.

For the second type of multi-task joint training, named
speaker + phone training, the text nodes represent the clus-
tered context-dependent triphones states which are the
basic modeling units in speech recognition (Lee, 1990).
The training process is similar to the first type but notice
that the number of clustered triphones states (usually over
two thousand) are much more than the number of phrases.

Once the neural network training process is finished, the
output layers of the two multi-task joint-learned DNNs
can be removed, and the rest of each of the neural networks
(common hidden layers) is used to extract the speaker-text
joint representative features.
4. Back-end classifiers with deep features

These deep features derived from the above described
deep models can then be used to replace the traditional
spectral features. In this paper, they are firstly applied in
GMM-UBM framework, and then these deep features
can also serve as the identity vectors, similar as the
i-vector framework, to get more sophisticated systems.
4.1. Deep features used in GMM-UBM framework

The deep features can be used directly in the
GMM-UBM framework. Also they can be combined with
the spectral features to form the tandem features in
GMM-UBM.
4.1.1. Single deep features

The single deep features can be directly used in
GMM-UBM system. After obtaining the high-dimension
features output from the hidden layer in different deep
models, the principal component analysis (PCA) is applied
to orthogonalize the high-dimension features and only the
most important components, which account for over 95%
of the total variance, are retained. Usually the deep fea-
tures are kept in the same dimension as the original spectral
features. Also mean and variance normalization are
applied to these new features. Finally, these deep features
can be used to replace the original spectral features to train
the normal GMM-UBM model.
4.1.2. Tandem deep features

Deep features described above are pure neural network
based features. Demonstrated by many cases in speech
recognition, combining neural network features with the



Fig. 6. Tandem deep features used in GMM-UBM.
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original spectral features in a tandem fashion as the Fig. 6
shows can yield additional gains. The same idea is applied
in GMM-UBM speaker verification. Described in Fig. 6,
once the neural network is trained, raw spectral features
are spanned in a context window (e.g. 11 frames, 5 frames
on each side) and fed into a refined deep neural network to
generate new features. The outputs from the specific hidden
layers are utilized as the high-level features, optionally
combined with the original spectral features, to build
GMM-UBM speaker verification systems. The outputs
from the hidden layer of the network always have high
dimension due to the shape of neural network (indicated
as the high-dim deep feature in the figure), so dimension
is reduced to the same size as the normal spectral features
using PCA algorithm. Then mean and variance normaliza-
tion are used to normalize both spectral features and new
deep features.

Although spectral features are not well discriminative,
they may contain some useful information that has been
omitted from deep features. In that way the tandem fea-
tures are not only more discriminative but also
comprehensive.

In addition, different types of deep features can also be
combined to form new tandem deep features. This is done
by simply concatenating different neural network features
to obtain multi-deep features combined system.
4.2. Deep features used in identity vector framework

Different from the above described method which uses a
deep model to extract deep features applied in
GMM-UBM framework, here we regard the deep features
extracted from the neural networks directly as the speaker
identity representations, which is similar as the i-vector
idea. In Google’s recent work, a speaker classified DNN
is trained to map frame-level features in a given context
to the corresponding speaker identity target. During enroll-
ment, the speaker identity vector is computed as the aver-
age of outputs derived from the last DNN hidden layer,
which is defined as a deep vector or “d-vector” (Variani
et al., 2014). In the evaluation phase, decisions are made
according to the distance between the target d-vector and
the test d-vector, which is similar as in the i-vector speaker
verification systems.

Inspired by this, all the types of proposed deep features
described in the Section 3 can serve to form the identity
vectors. Considering that the deep features are
frame-level features, to obtain the identity vector of a
speaker (speaker here represents joint class – speaker and
phrase because of text-dependent condition), all of these
deep features belonging to the same class are averaged to
form the target vector. In this work, besides extracting
the identity vectors from the last hidden layer as the previ-
ous d-vector work (Variani et al., 2014), we also explored
the identity vectors extraction from different hidden layers
to investigate better performance. For the convenient rep-
resentation, the identity vectors extracted using the above
four (actually five) deep models (deep restricted boltzmann
machines, speech-discriminant deep neural network,
speaker-discriminant deep neural network, multi-task joint
learned (speaker + phrase) deep neural network, multi-task
joint learned (speaker + phone) deep neural network) are
named r-vector, p-vector, d-vector (the same as the name
in Google’s recently work (Variani et al., 2014)), j-vector
(spkr-phr-vector, spkr-pho-vector) respectively.

These identity vectors can be used in several different
back-end classifications, such as cosine similarity, linear
discriminant analysis (LDA) (McLaren and Van
Leeuwen, 2012, 2011), and probabilistic linear discriminant
analysis (PLDA) (Matejka et al., 2011; Kenny et al., 2013),
all of which are usually used in the classic i-vector frame-
work. Previous work on d-vector (Variani et al., 2014) only
used cosine similarity for verification, however we investi-
gate other classifiers in detail on these different types of
NN based identity vectors.
4.2.1. Joint linear discriminant analysis

Linear discriminant analysis (LDA) provides good gen-
eralization capability even with limited number of training
samples. The motivation for using this model is that LDA
attempts to define new special axes that minimize the
intra-class variance caused by channel effects, and to max-
imize the variance between classes. Due to these reasons it
was used on many tasks related to speaker verification and
speaker identification (Matejka et al., 2011; Jin and
Waibel, 2000). It assumes that each class density can be
modelled as a multivariate gaussian:

Nðxjlk;RkÞ ¼
1

ð2pÞp=2jRkj
1
2

exp�
1
2ðx�lkÞR�1

k ðx�lkÞ ð8Þ



Table 1
Performance EER (%) of basline systems.

System EER(%)

GMM-UBM 1.50
i-vector 5.02
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where Rk and lk is the covariance and mean for class k.
LDA(Scholkopft and Mullert, 1999) model assumes that
Rk ¼ R; 8k. And the posterior probability is given as:

P ðClass ¼ kjX ¼ xÞ ¼ N ðxjlk;RkÞpkPK
l¼1Nðxjll;RlÞpl

ð9Þ

where K denotes the total number of classes and pk is the
prior of class k (uniform distribution is used as prior in this
work).

It is obvious to define the class in other types of identity
vectors except the multi-task joint learned vector. It is
noted that we need to define the LDA class as the joint
class considering both speaker and phrase information in
j-vector, similar to the joint learned process in deep neural
networks.

It is worthy to note that the posterior calculation limits
the usage of LDA algorithm. It assumed that the test seg-
ments are given by one of the enroll speaker, which condi-
tion is defined as closed-set evaluation.

4.2.2. Probabilistic linear discriminant analysis

LDA uses gaussian mixture model, which can be
regarded as a latent variable model, where the observed
node x represents the example and the latent variable lk

is the center of a mixture component representing class k.
The class-conditional distribution is P ðxjyÞ ¼ N ðxjlk;/Þ
where / is shared by all classes. PLDA (Matejka et al.,
2011; Kenny et al., 2013) is proposed to make the latent
variable prior continuous. Particularly, to enable efficient
inference and closed-form training, a Gaussian prior is
imposed: P ðlkÞ ¼ N ðlkjm;/bÞ.

One advantage of PLDA is that it is not constraint to
the closed-set in testing, so it also can deal with those “un-
seen speakers”, who are not in the enrolled speakers.1

5. Experiments and results

To fully explore the effectiveness of the proposed deep
features for the text-dependent speaker verification, exper-
iments and comparisons about these four types of NN
based features are designed, and the evaluations are imple-
mented in both the GMM-UBM framework and identity
vector framework.

5.1. Experimental setup and baseline systems

In all the experiments of this paper, the bkg and dev
data of RSR2015 part I are merged as new bkg data
(194 speakers, 100 male/94 female). In the test data set
there are 19,052 tests for true speaker and 1,548,956 tests
for imposture.
1 In this paper, all the experiments are the closed-set evaluation, and the
testing utterances are all from one of the enrolled speakers, i.e. non unseen
speakers exist in the experiments.
Two normal systems are constructed as the baseline sys-
tems in this work: one is the spectral feature based
GMM-UBM system and the other is the traditional
i-vector system. 39-dimensional PLP features with mean
and variance normalization are used as the spectral fea-
tures in the baselines. An energy-based Voice Activity
Detection (VAD) is utilized to detect the speech segments,
and a gender-independent UBM of 1024 components is
trained using the new bkg data for the GMM-UBM base-
line. In the traditional classic i-vector system construction,
parts of NIST SRE 2005 and NIST SRE 2008 data are
used as the development data to train the T matrix and
cosine similarity is directly used after LDA in back-end
processing. The Equal Error Rate (EER) of the baseline
systems are illustrated in Table 1. We can see that the
EER is relatively low compared to the usual
text-independent tasks, and it is relatively hard to improve
on this good point baseline. The traditional i-vector system
is not as good as the GMM-UBM system in this
text-dependent scenario, which is consistent to the conclu-
sions in others’ work (Larcher et al., 2014).

5.2. Neural network training configuration

To evaluate the proposed four types of deep feature
extractors, different neural networks are trained firstly,
including Deep RBM, speech-discriminant DNN,
speaker-discriminant DNN and multi-task joint-learned
DNN. All the deep models have 7 hidden layers with
1024 nodes per layer, and a context window of 11 frames
39-dim PLP is concatenated to be used as the NN input.
The new bkg data is used in the NN training.

The state alignment for the speech-DNN training is per-
formed using a GMM-HMM model with 3001
tied-triphone-states, which is built on a 50-h SWB
English task (refer to our previous work in (Fu et al.,
2014). Totally 194 classes (194 speakers in the new bkg
set) are used in the speaker DNN training. In the first type
of multi-task joint learned neural network, speaker + -
phrase, 224 classes (194 speakers and 30 phrases) are used
in the joint training. In the second type, there are 3195
classes (194 speakers and 3001 triphone states).

The contrastive divergence algorithm is used in the Deep
RBM training, and SGD based back-propagation is
applied to train the other DNNs. The learning rate anneal-
ing and early stopping strategies as in (Dahl et al., 2012)
are used in the BP process and the DNNs are fine-tuned
with cross-entropy objective function, along with an

L2-norm weight-decay term of coefficient 10�6.
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5.3. Evaluation of the deep features in GMM-UBM

framework

When finishing the model training, the deep models are
utilized to transform the original spectral features into the
new deep features. For each speech frame, the principal
component analysis (PCA) is applied on the outputs of hid-
den layers and reduces the dimension to 39 as the original
PLP features. After mean and variance normalization,
these new deep features can be used for the following mod-
eling, or be connected with the original PLP to form the
new concatenated tandem deep features. The later
GMM-UBM construction is built as usual.
5.3.1. Evaluation of individual deep features

The proposed four types of deep features are firstly
investigated individually. For detailed comparison, the
experiments of deep features extracted from different hid-
den layers of the Deep RBM or DNNs are performed.
Besides the experiments using the single deep features
and the concatenated tandem deep features are also imple-
mented. A system performances are shown in Table 2.

From Table 2, it is observed that most of the neural net-
work based deep features get much better performance
than the PLP baseline. Regarding the RBM-based deep
features, the feature from the middle layer obtains the best
EER, and the relatively lower layer (the 2nd layer here)
achieves the best position when using the speech, speaker
or multi-task based DNNs. Although the single deep fea-
tures already can obtain the obvious improvement, the
concatenated features with PLP get a much larger EER
reduction in all types of neural networks. Moreover the
supervised DNNs could use more information for model
training, and they are all superior to the unsupervised
RBM in tandem deep feature based GMM-UBM. The
speech-discriminant DNN retains much more information
about the text which is especially useful in this
text-dependent task, while more speaker-dependent knowl-
edge can be enhanced in the speaker-discriminant DNN,
which makes the features more speaker discriminable.
Considering the multi-task joint-learned DNNs, no matter
speaker + phrase DNN or speaker + phone DNN, they are
the best choices in deriving deep features. Moreover there
are relatively big differences among the performance of dis-
tinct layers in speech/speaker discriminative DNNs, how-
ever the differences are very small when in the multi-task
Table 2
Performance EER (%) of individual discriminative deep features. The bold fo

Layer index RBM Speech-DNN Speak

Deep fea + PLP Deep fea + PLP Deep

Base GMM-UBM 1.50

2nd-layer 1.25 0.99 1.45 0.89 1.08

4th-layer 1.23 0.94 1.86 1.04 1.48
7th-layer 1.46 1.06 1.94 1.15 2.15
joint-learned ones, which illustrates the robustness and
effectiveness of the multi-task joint-learned approach
again.

In the RSR2015 evaluation, the speech texts are rela-
tively fixed and there are only small number of phrases
(30 distinct phrases). Accordingly speaker + phrase DNN
is a good choice to be used as a deep feature extractor.
In other situations where the texts are more flexible, speak-
er + phone DNN can be more suitable. Besides the unsu-
pervised RBM method is a good alternative to make use
of large quantity of unlabelled data. To summarize, neural
network based deep features show much better perfor-
mance in text-dependent speaker verification.
5.3.2. Evaluation of different deep features combination

Different types of deep features can also be combined to
form new tandem discriminative deep features. In this sec-
tion, we select the relative best system for individual deep
feature respectively, such as the 4th-layer RBM deep fea-
ture, the 2nd-layer speaker discriminant DNN deep fea-
ture, and the 2nd-layer speaker + phrase multi-task
learned DNN. The different deep features are tried to be
concatenated to form new tandem deep features (PLP is
always connected). After this, the GMM-UBM modeling
is performed as before. The results of different deep feature
combinations are shown in Table 3. These systems not only
comprise complementarity of different target based DNNs,
e.g. phone v.s. speaker, but also combine different criteria
training strategies, including the unsupervised strategy
and supervised strategy.

It can be observed that compared to the individual deep
feature systems in Table 2, the multi-deep feature combina-
tions obtain additive improvements.The best tandem deep
feature approach obtains another 10% relative EER reduc-
tion when compared to the best individual system.
Compared to the baseline, the multi-deep features show
obvious advantages in discrimination. The DET curves in
Fig. 7 show a performance comparison of some of the pro-
posed features in GMM-UBM framework.
5.4. Evaluation of the deep features in identity vector

framework

As described in Section 4.2, the individual identity vec-
tors are firstly extracted by the average of the last hidden
layer’s outputs in each type of deep models, as named
nts denote the best performance in individual deep feature type.

er-DNN Speaker + phrase DNN Speaker + phone DNN

fea + PLP Deep fea + PLP Deep fea + PLP

0.80 1.06 0.80 1.06 0.85

0.97 1.07 0.84 0.95 0.93
0.96 1.13 0.92 1.19 0.93



Table 3
Performance of different deep features combination.

PLP RBM Speech-DNN Speaker-DNN Speaker + phrase DNN Speaker + phone DNN EER (%)
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Fig. 7. The DET comparison of different deep features in GMM-UBM
framework.
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r-vector, p-vector, d-vector, j-vector (spkr-phr-vector and
spkr-pho-vector) respectively.

The LDA model is then trained using these identity vec-
tors respectively. The class defined in the LDA method is
the joint label of speaker and phrase. For each test audio
we extract identity vector using the same steps and then
we use the decision function from LDA algorithm to distin-
guish among different models. Similarly the PLDA based
approach is also applied, here we set the within class
covariance smoothing parameter2 to be 0.1 and then esti-
mate the PLDA model with 25 iterations. Besides, the
two methods can also be combined, which means that
firstly PLDA is applied and then LDA is used to make
the final decision. For easy comparison, the cosine similar-
ity based decision function is also implemented, which is
2 In order to get a good estimate of the within-class covariance, the
production of this parameter and the between-class covariance is adding
to the within-class covariance.
used in Google’s d-vector work (Variani et al., 2014). The
performance comparison is summarized in Table 4.

From Table 4, it shows that the classifier is important
for these NN-based identity vectors. As for the proposed
LDA, PLDA or the LDA + PLDA approach, there is a
very large performance decline in all the networks when
compared to the cosine similarity based decision.
Different from the traditional i-vector method (Dehak
et al., 2011), the simple cosine similarity based classifier is
not appropriate for these neural network based identity
vectors. The LDA method gets the best position in almost
every types of NN-based identity vector. It may be benefit
from the strict closed-set condition in this evaluation.
Among these identity vectors, d-vector derived from
speaker-discriminant neural network is relatively the worst
choice, and the multi-task joint-learned neural networks
are much better and more robust than the others.

Similar as the experiments on the deep features in
GMM-UBM framework in Section 5.3, the experiments
on NN-based identity vector from different hidden layers
are also investigated on the multi-task joint-learned
DNNs, which is better than the others according to
Table 4. The identity vectors extracted from different layers
using LDA and PLDA are shown in Table 5. It shows that
there is another significant improvement when moving the
layer from close to the output, to close to the input, and
this is also consistent with the conclusion in the previous
GMM-UBM framework. The best systems using the
joint-learned identity vectors from the second hidden layer
achieve 0.1% EER on both two type j-vectors.

5.5. The final system comparison for the proposed methods

The proposed novel approaches are summarized and
illustrated in this section, including the best deep feature
based GMM-UBM system and the deep feature based
identity vector system. Fig. 8 shows a performance com-
parison of the proposed systems. Compared to the tradi-
tional baselines, the novel deep feature based systems
show substantial improvement, and they are both using
discriminative deep features. Particularly the EER of the
system using j-vector is reduced 15 times when compared
to the GMM-UBM baseline (i-vector baseline is much
worse).



Table 4
Performance EER (%) of different NN based identity vector systems. The bold fonts denote the best
performance in individual identity vector type.

DNN Classifier EER minDCF

r-vector Cosine sim. 17.61 0.7817
LDA 0.33 0.0151

PLDA 1.06 0.0476
PLDA + LDA 0.22 0.0105

p-vector Cosine sim. 4.67 0.2172
LDA 0.27 0.0131

PLDA + LDA 0.30 0.0155

d-vector Cosine sim. 7.55 0.3473
LDA 1.12 0.0459

PLDA 2.01 0.0984
PLDA + LDA 1.15 0.0448

spkr-phr-vector Cosine sim. 4.41 0.2163
LDA 0.15 0.0080

PLDA 1.25 0.0491
PLDA + LDA 0.20 0.0117

spkr-pho-vector Cosine sim. 4.41 0.2163
LDA 0.19 0.0081

PLDA 1.18 0.0450
PLDA + LDA 0.22 0.0105

Table 5
Performance EER (%) of NN-based identity vectors from different hidden
layers. The bold fonts denote the best performance.

Layer index spkr-phr-vector spkr-pho-vector

LDA PLDA LDA PLDA

2nd-layer 0.10 0.90 0.10 0.90
4th-layer 0.11 0.94 0.13 1.04
7th-layer 0.15 1.25 0.19 1.18

Fig. 8. The DET comparison of the best results of the proposed methods
and the baseline results.

Y. Liu et al. / Speech Communication 73 (2015) 1–13 11
6. Conclusion and future work

This paper presents the detailed work on using various
types of deep features for text-dependent speaker
verification. Four types of deep feature engineering are
proposed, including deep restricted boltzmann
machines, speech-discriminant deep neural networks,
speaker-discriminant deep neural networks, and
multi-task joint-learned deep neural networks. These deep
features are all implemented in both the GMM-UBM
and identity vector framework, and they are much more
effective and robust than the traditional methods in
both frameworks. Among the proposed four types of deep
features, the features from the multi-task joint-learned
DNN outperform the others and show superior advan-
tages. The best system using j-vector with LDA classifier
achieves the EER 0.1%, which clearly outperforms the
baseline.

Based on these experimental results, we could see that
using deep models is very promising in speaker verification.
In the future, other ways to extract deep features or other
deep structures will be developed.
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