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Abstract
Predictive phenotyping is about accurately predict-
ing what phenotypes will occur in the next clinical
visit based on longitudinal Electronic Health Record
(EHR) data. While deep learning (DL) models have
recently demonstrated strong performance in pre-
dictive phenotyping, they require access to a large
amount of labeled data, which are expensive to ac-
quire. To address this label-insufficient challenge,
we propose a deep dictionary learning framework
(DDL) for phenotyping, which utilizes unlabeled
data as a complementary source of information to
generate a better, more succinct data representation.
Our empirical evaluations on multiple EHR datasets
demonstrated that DDL outperforms the existing pre-
dictive phenotyping methods on a wide variety of
clinical tasks that require patient phenotyping. The
results also show that unlabeled data can be used
to generate better data representation that helps im-
prove DDL’s phenotyping performance over existing
methods that only uses labeled data.

1 Introduction
The recent rise in popularity of deep learning (DL) and the
widespread use of electronic health record (EHR) data in clin-
ical research have sparked strong interest in using DL for
electronic phenotyping, which is of paramount importance
in various health analytics tasks such as chronic disease di-
agnosis [Lipton et al., 2015; Ma et al., 2017], patient sub-
typing [Baytas et al., 2017] and disease prediction [Esteban
et al., 2016]. The key advantage of DL models are their
abilities to construct deep features that capture complex and
long-range data dependencies efficiently, both of which are
particular traits of biomedical data. This helps DL models
achieve better performance and require less effort in feature
engineering than classical machine learning (ML) models.

Despite these successes, the training of DL-based phenotyp-
ing models often relies on direct supervision via labeled data,
which in turn requires access to a large volume of EHR data
annotated with relevant medical labels. This highlights a key
weakness of existing DL-based phenotyping models in terms
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of practical efficiency and data utilization. First, acquiring la-
beled data is often prohibitively expensive due to the incurred
labor-intensive data annotation, which makes the training prac-
tically inefficient. Second, most DL models are trained using
supervised learning methods, which do not make use of unla-
beled EHR data [Lipton et al., 2015; Choi et al., 2016b; Ma
et al., 2017, 2018]. Ignoring unlabeled data, however, leads
to a severe under-utilization of available information since
such data can still be exploited to learn a better representa-
tion of labeled data (hence, better prediction performance)
even though they do not contain predictive information. To
mitigate the above weaknesses, this paper aims to develop a
deep dictionary learning (DDL) framework that utilizes and
combines both labeled and unlabeled data to learn a better data
representation for predictive phenotyping.

To elaborate, DDL implements a hybrid learning architec-
ture that combines ideas from both dictionary learning and
recurrent neural network (RNN) for temporal prediction. This
is achieved by first embedding raw, unlabeled EHR data into
a latent feature space using DDL’s RNN component. Then,
dictionary learning is applied on the resulting set of embedded
representations to search for a smaller set of patterns that oc-
cur frequently across different patients’ representations. This
in turn allows DDL to characterize each patient’s embedded
representation as a linear combination of those frequent pat-
terns, which constitutes their deep dictionary representations
(Section 2.2).

Furthermore, to optimize the above deep dictionary
representation, DDL develops a deep dictionary decoder that
reconstructs a patient’s unlabeled EHR data from its deep
dictionary representation. This is achieved by minimizing
the decoder’s reconstruction loss, which helps establish a
parsimonious set of hidden-layer patient prototypes (Sec-
tion 2.3). Different patients can then be viewed as different
combinations of these prototypes where the combination
coefficients represent its high-level feature description. These
coefficients are then coupled with the patients’ labeled
data to learn a mapping from each patient’s high-level
description to his/her target outcomes (Section 2.4). This is
also demonstrated in our experiments (Section 3) that such
representation indeed induces better performance than those
of the existing baselines for predictive phenotyping.

Last but not least, DDL also develops an end-to-end training



mechanism that optimizes the above data embedding (Sec-
tion 2.2), reconstruction (Section 2.3) and prediction (Sec-
tion 2.4) components simultaneously. This intuitively allows
DDL’s representation components (built with unlabeled data)
to coordinate with its prediction component (built with labeled
data) to avoid generating representations which are biased
towards artifacts in unlabeled data. As a result, DDL gener-
ates a less biased representation that is beneficial for both
reconstruction and prediction loss minimization, thus lead-
ing to better predictive phenotyping performance. This is in
contrast to existing semi-supervised ML methods [Mairal et
al., 2009; Tariyal et al., 2016; Dligach et al., 2015], which
perform training with separate supervised and unsupervised
steps, and are therefore vulnerable to biased representations
caused by artifacts in unlabeled data.

To demonstrate the aforementioned advantages of DDL, we
evaluated its performance and compared it against those of
a set of selected state-of-the-art predictive phenotyping base-
lines on an extensive benchmark (Section 3) comprising mul-
tiple real-world EHR datasets and a wide variety of predictive
phenotyping tasks (e.g., heart failure classification, mortality
and sequential prediction). The reported results demonstrate
improved prediction performance of DDL consistently over all
baselines, which provides strong empirical evidence to sup-
port our key contribution statement that unlabeled data can
be coupled with labeled data via semi-supervised learning to
boost the performance of predictive phenotyping.

2 Method
This section presents the technical details of our developed
DDL framework. In particular, our notations are first intro-
duced in Section 2.1. Section 2.2 presents our developed deep
dictionary encoder that generates deep dictionary representa-
tions for EHR data. Section 2.3 then presents a deep dictionary
decoder that maps the generated deep dictionary representa-
tions back to EHR data, and optimizes it via minimizing the
reconstruction loss. Section 2.4 develops a deep dictionary
predictor that maps each patient’s deep dictionary representa-
tion to relevant target outcomes. Finally, Section 2.5 presents
a collaborative training architecture (see Fig. 1) that jointly
trains all the aforementioned components, thus allowing them
to converge on the best deep dictionary representation that
minimizes both reconstruction and prediction losses.

2.1 Notations and Definitions
Our EHR data comprises medical records of N different pa-
tients. The medical record of each patient n = 1 . . . N is
represented as: the input Xn , [x

(1)
n ;x

(2)
n ; · · · ;x(kn)

n ] de-
notes a collection of patient’s records for his/her past visits
to the clinic, and kn is the number of the n-th patient’s visits.
Each visit record x

(i)
n ∈ {0, 1}p can be represented as a multi-

hot vector that indicates whether the patient was associated
with a particular medical code during his/her i-th visit to the
clinic. There are p unique medical codes. The corresponding
output/label yn ∈ {0, 1}c of a patient’s EHR data Xn is also
a multi-hot vector that indicates whether the patient was diag-
nosed with a certain target disease or condition. There are c
unique target diseases or conditions. In our setting, the label

yn is only available for a small subset ofM < N patients with
n = 1, . . . ,M , which is designated as our labeled training
dataset D , (Xn,yn)

M
n=1. Given the labeled and unlabeled

EHR datasets of previous patients, i.e. D , (Xn,yn)
M
n=1

and U , (Xn, )
N
n=1, respectively, the aim of the predictive

phenotyping task is to learn a latent function that maps from
a patient’s EHR data X to an output vector y ∈ {0, 1}c that
characterizes his/her phenotype accurately.

2.2 Deep Dictionary Encoder
This section develops a deep dictionary encoder that can suc-
cinctly captures embedded representations from the patient’s
unlabeled EHR data U = (Xn)

N
n=1 coherently and in accor-

dance with each other. This will help establish a parsimonious
set of hidden-layer patient prototypes, which constitutes our
deep dictionary representation. This can be achieved by com-
bining ideas from both deep and dictionary learning, which is
an emerging paradigm of predictive deep models in computer
vision.

Intuitively, the key idea is to first exploit the capability of
DL model to embed complex data (e.g., EHR data with vary-
ing length due to different numbers of clinical visits among
different patients) into fixed-size, low-level embeddings. To
incorporate high-level representations for better predictive per-
formance, we use dictionary learning to further decompose
these embeddings into fundamental patterns that succinctly
characterize a space of high-level features. The patient embed-
dings can then be projected onto this space and the projection
coefficients can be leveraged as high-level features to improve
the cognitive capability of the predictive model.

To represent each patient, we employ an RNN with Long
Short Term Memory (LSTM) architecture [Hochreiter and
Schmidhuber, 1997], which is well-known for its ability to
capture long-range dependencies within longitudinal data such
as patient’s EHR. In particular, the LSTM module generates
a latent embedding gn from the multi-hot encoded patient
record Xn,

gn = LSTM(Xn) = LSTM
(
x(1)
n ,x(2)

n , . . . ,x(kn)
n

)
, (1)

where gn ∈ Rd is the output of the LSTM, which is used
as the embedded, fixed-length patient representation. In the
above equation, we concatenate the multi-hot vectors (cor-
responding to the patient’s different clinical visits) into an
extended input vector for the LSTM. Based on the above em-
bedded representation, we further adopt dictionary learning to
extract both a dictionary of hidden-layer prototypes (which is
patient-independent) and a collection of weight vectors (one
per patient), which specifies how these prototypes can be com-
bined to characterize a particular patient accurately. This is
achieved via minimizing the following regularized projection
loss,

Ld

(
D, {rn}Nn=1

)
,

N∑
n=1

(
1

2
‖gn −Drn‖22 + λ1‖rn‖1

)
+ λ2 ‖D‖2F , (2)

with respect to {rn}Nn=1 (rn ∈ Rk) and D ∈ Rd×k, which
denote the weight vectors (or sparse codes) that characterize



each patient and the dictionary of patient prototype represented
in the embedded space, respectively. To avoid generating triv-
ial solutions, the above loss is also regularized by penalizing
the complexities λ1‖rn‖1 and λ2‖D‖2F of the sparse codes
and dictionary with λ1 and λ2 being the regularization param-
eters. The embedded patient prototype can then be mapped
back to the patient space via a deep dictionary decoder (see
Section 2.3). Note that the above loss in Eq. 2 is convex in D
given {rn}Nn=1 and vice versa. Thus, Eq. 2 can be optimized
(with local convergence guarantee) via alternating minimiza-
tion [Chatterji and Bartlett, 2017].

2.3 Deep Dictionary Decoder
To map the patient deep dictionary representation (D, rn)
back to the original patient space, we develop a deep dictio-
nary decoder module which specifically maps (D, rn) to a
vector qn , [q

(1)
n . . .q

(p)
n ] ∈ [0, 1]p of probability scores such

that q(i)
n ∈ [0, 1] denotes the probability that medical code i

contributes actively to the patient’s predicted outcome yn. We
parameterize the decoder D(D, rn) as a neural network with
a fully-connected layer followed by a sigmoid activation,

qn , D(D, rn;W) , σ (WDrn) , (3)

where the sigmoid operator σ(x) , 1/(1 + exp(−x)) is ap-
plied point-wise to each element of the logit vector WDrn.
The above neural network is parameterized by the weight W
of the dense, fully-connected layer. To optimize W, we gen-
erate the augmented dataset {(D, rn),Xn}Nn=1, which can be
generated via the deep dictionary embedding technique pre-
sented in Section 2.2. The augmented dataset can then be used
to train the above neural network via back-propagation with
the following cross-entropy reconstruction loss,

Lr
(
W,D, {rn}Nn=1

)
=

N∑
n=1

p∑
i=1

X
(i)

n logq(i)
n

+
(
1−X

(i)

n

)
log
(
1− q(i)

n

)
, (4)

where X
(i)

n ∈ [0, 1] is the average occurrence of medical code
i over all clinical visits of patient n. Optimizing Eq. 4 thus
yields the deep dictionary decoder. To use this deep dictionary
decoder on an unseen patient, we project the patient embedded
representation g on D via minimizing ‖g−Dr‖22 with respect
to r, which can be solved analytically.

2.4 Deep Dictionary Predictor for Labeled Data
Given the deep dictionary representation (D, rn) of labeled
training data D = (Xn,yn)

M
n=1, we can further build a deep

dictionary predictor that maps from a patient’s sparse code
rn to a vector on of predicted probabilities that the patient
will be associated with each target outcomes (e.g., disease or
mortality). This is achieved by parameterizing the predictor
with a fully-connected layer followed by a soft-max activation,

on = softmax (Vrn + b) ∈ Rc , (5)

where V ∈ Rc×k and b ∈ Rc are the weight matrix and bias
vector, respectively. These parameters can then be learned via

Figure 1: The architecture of our DDL framework includes 3 inter-
connected modules: (1) an encoder that generates a deep dictionary
representation for a patient’s EHR data, (2) a decoder and (3) a
predictor which are both connected to the encoder, which allows them
to collaboratively decide on the best representation that minimizes
both reconstruction and minimization losses.

minimizing the cross-entropy between the predicted probabili-
ties on and the ground-truth label yn,

Lc
(
V,b, {rn}Mn=1

)
, −

M∑
n=1

c∑
i=1

y(i)
n log o(i)

n , (6)

with respect to V and b. c is number of prediction targets,
and n = 1 . . .M is the patient index in the labeled training
data D with yn ∈ {0, 1}c denote the corresponding patient
label characterizing his/her phenotype. y(i)

n and o
(i)
n are the

i-th entries of yn and on, respectively.

2.5 Collaborative Prediction and Reconstruction
This section develops an collaborative architecture that con-
nects the previously developed deep dictionary decoder and
deep dictionary predictor using a common layer of deep dic-
tionary encoder (see Fig. 1).

This allows us to optimize the above components simul-
taneously so that the deep dictionary encoder could interact
with both the decoder and predictor modules to figure out a
viable communication medium (i.e., the dictionary) that al-
lows them to reach a consensus. Intuitively, the encoder plays
the role of a mediator that suggests communication options
for the decoder and predictor, and depending on the resulting
quality of communication between them (i.e., the incurred pre-
diction and reconstruction losses), the encoder will revise the
communication medium until it facilitates an acceptable con-
sensus between the decoder and predictor. This is in contrast
to a naive solution that trains these components separately,
which does not allow communication/coordination between
the encoder, decoder and predictor; and therefore, cannot guar-
antee that the learned results would be optimized for both
reconstruction and prediction.

To facilitate the aforementioned coordination, we aggregate
the loss functions of these components (i.e., encoder, decoder
and predictor) to generate a combined performance feedback,
which can be exploited to update them jointly via stochastic
gradient back-propagation,

L` = ηdLd + ηrLr + ηcLc , (7)



Algorithm 1 DDL (Tmax – max no. of optimizing iterations)

1: Input: randomized LSTM, W, D, V and b.
2: for t = 1 . . . Tmax do
3: sample mini-batchM⊆ {X1, . . . ,XN}.
4: for Xn ∈M do
5: Encoder: Estimate Embedded Representation
6: gn←LSTM(Xn) = LSTM

(
x
(1)
n ,x

(2)
n , . . . ,x

(kn)
n

)
7: Encoder: Estimate Sparse Code Representation
8: rn ← argmin

r∈Rk

‖gn −Dr‖22 + λ1‖r‖1 using Alg. 2.

9: Decoder: Reconstruction Data
10: qn ← D(D, rn;W) via Eq. 3
11: Predictor: Estimate Prediction Probabilities
12: if Xn ∈ D (i.e., Xn is labeled) then
13: on ← softmax (Vrn + b) via Eq. 5
14: end if
15: end for
16: Compute L’s stochastic gradient using the above
17: Update all parameters via stochastic gradient descent.
18: end for
19: Output: optimized LSTM, W, D, V and b.

where L` is parameterized by W,D,V,b and {rn}Nn=1 for
which the projection loss Ld only depends on (D, {rn}Nn=1),
the reconstruction loss Lc depends on (W,D, {rn}Nn=1), and
the prediction loss Lc depends on (V,b, {rn}Mn=1). The extra
hyper-parameters ηd, ηr and ηc are manually tuned to trade-off
between individual losses.

In addition, note that the projection and reconstruction
losses do not depend on the training output and can there-
fore be pre-trained in advance using only unlabeled data U . In
this case, the loss function reduces to

Lu = ηdLd + ηrLr , (8)

which is first minimized (using unlabeled data) with respect
to D,W and {rn}Nn=1 to generate a good starting point for
these parameters before further optimizing them via Eq. 7, and
in accordance with the predictor’s parameters (V,b) using
labeled data, thus still allowing end-to-end training that si-
multaneously optimizes both the supervised and unsupervised
components of DDL (albeit with a starting point generated
from pre-training its unsupervised component). The above
process is, however, not computationally efficient due to the
large number of optimizing parameters, which consequently
results in a very slow convergence rate if we train all these pa-
rameters from scratch. To address this issue, we instead adopt
a different approach which first computes a warm-start for
the sparse codes {rn}Nn=1 (as detailed below) as a good start-
ing point to initiate gradient back-propagation on the entire
network. The main algorithm is shown in Algorithm 1.

To initialize the sparse code rn for each patient, we fix the
dictionary D and the data embedding layer of the network
(hence, the patient’s embedding representation gn). Thus,
given (D,gn), the objective in Eq. 7 is convex with respect to

rn and reduces the following form,

rn = argmin
r∈Rk

(
1

2
‖gn −Dr‖22 + λ1 ‖r‖1) , (9)

which can be solved efficiently using proximal gradient
method [Parikh and Boyd, 2014], as detailed in Algorithm 2
below. The use of proximal gradient descent is a technical
necessity in this context since (9) is not differentiable every-
where due to the L1 regularization λ1‖r‖1. Proximal gradi-
ent descent sidesteps this issue by decomposing (9) into two
parts: (a) f(r) , 1/2‖gn − Dr‖22 which is differentiable,
and (b) h(r) , λ1‖r‖1 which is not differentiable. Thus,
starting from a random initialization of r, we can use gradi-
ent descent on the first part to update r with respect to the
differentiable part f(r) and then update it with respect to
the non-differentiable part λ1‖r‖1 via the following proximal
operator,

r← proxλ1h
(r) , argmin

r′

(
f(r′) +

1

2
‖r′ − r‖22

)
, (10)

which can be solved analytically. Interested readers are re-
ferred to [Parikh and Boyd, 2014] for further details on the
intuition and rationality behind proximal gradient descent.

3 Experiment
In this section, we empirically evaluate the performance of
DDL against several state-of-the-art baseline methods on 3
healthcare datasets, Heart Failure (HF) [Ma et al., 2018],
MIMIC-III and a subset of Truven MarketScan Data1, which
contain 16794, 58000 and 72179 EHR samples, respectively.
The numbers of clinical variables (p) in HF, MIMIC-III and
TRUVEN are 1865, 283 and 283, respectively. In HF and
MIMIC-III, the task is to predict the HF and mortality binary
outcomes. For TRUVEN data, the prediction task is to predict
which clinical variables are positive in the patient’s latest visit
given data of his/her past visits.

3.1 Experiment Settings
For each experiment, we randomly generate 5 different parti-
tions of the entire dataset into training, validation and testing
sets with a 7 : 1 : 2 ratio. The reported result of each tested
method is its averaged result over 5 independent runs corre-
sponding to the 5 different data partitions. Our method is
implemented by Tensorflow 1.9.0 and Python 3.52; and tested

1https://marketscan.truvenhealth.com/
2Code is available at https://github.com/futianfan/dictionary.

Algorithm 2 Proximal Optimization (r, Tmax)

1: Initialize learning rates ξ1, . . . , ξTmax

2: for k = 1 . . . Tmax do
3: r = r − ξk∇rf(r) = r − ξkD>(g −Dr)
4: r = proxξkλ1h

(r)
5: if converge then
6: break
7: end if
8: end for

https://marketscan.truvenhealth.com/
https://github.com/futianfan/dictionary
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Figure 2: Graphs of average accuracy with 95% confidence interval of DDL and DAPS on (a) HF, (b) MIMIC-III, and (c) TRUVEN datasets.
The reported performance is generated using 150 labeled data samples and varying number of unlabeled data samples.

(a) (b) (c)

Figure 3: Graphs of average accuracy (with 95% confidence interval) of DDL and baseline methods on (a) HF, (b) MIMIC-III, and (c) TRUVEN
datasets. In all experiments, the size of training dataset is fixed while the fraction of labeled data is being varied.

on an Intel Xeon E5-2690 machine with 256G RAM and 8
NVIDIA Pascal Titan X GPUs. We evaluate each method
using its best fine-tuned hyper-parameter configurations. The
best configurations of DDL are described below.

For HF dataset, the no. of hidden units of DDL’s RNN
component is set to 100. Its dictionary size is set to 10. Its
learning rate for gradient back-propagation on the aggregate
loss (Eq. 7) is set to be 1e−2. To trade-off between projection,
reconstruction and prediction losses, we set ηd = 1e − 1,
ηc = 1 and ηr = 1e − 3 in Eq. 7. For the projection loss
Ld in Eq. 2, the regularization hyper-parameters are set as
λ1 = 5e−2 and λ2 = 1e−3. For MIMIC-III dataset, we use
the same configuration but with the following minor changes
on learning rate (5e − 2) and trade-off coefficients (ηd =
ηc = 1 and ηr = 2e − 3) between individual losses of DDL.
For TRUVEN dataset, we also use the similar configuration
but with the dictionary and RNN component’s hidden sizes
set to be 15 and 200, respectively. In addition, the trade-off
coefficients in Eq. 7 are also adjusted to ηd = 1e − 1 and
ηc = ηr = 1. The batch sizes of DDL’s stochastic gradient
descent on HF and MIMIC-III are both set to be 32, while on
TRUVEN, it is set to be 64 (since TRUVEN dataset is larger
than the others).

3.2 Baseline Methods
To demonstrate the advantage of DDL, we evaluate and com-
pare its performance with those of the baseline methods, which

includes (a) state-of-the-art deep phenotyping methods such
as Doctor-AI (RNN) [Choi et al., 2016a], Reverse Time Atten-
tion RNN (RETAIN) [Choi et al., 2016b], Denoising Autoen-
coders for Phenotype Stratification (DAPS) [Beaulieu-Jones et
al., 2016], and (b) two traditional ML methods featuring Logis-
tic Regression (LR) with L2 regularizer and Dictionary Learn-
ing (DictLearn) [Mairal et al., 2009]. The LR, DictLearn
and DAPS baselines were trained using the aggregated fea-
ture vector X̃n ∈ {0, 1}p (instead of using the original input
Xn), which was derived from the original EHR data Xn such
that X̃(i)

n = 1 if the i-th clinical variable occurred at least
once in Xn’s multiple clinical visit. Otherwise, X̃(i)

n = 0.
Furthermore, to showcase the effectiveness of training DDL’s
unsupervised and supervised components together (instead of
separately), we also include in the set of baselines a simplified
version of DDL that excludes the decoder module. In this case,
the aggregated loss function reduces to L` = ηdLd + ηcLc.

3.3 Comparison in Supervised Setting
This section evaluates and reports the performance of DDL and
baseline methods in supervised setting. That is, the training
only uses EHR data with label. For experiments on HF and
MIMIC-III datasets, the performance of each method is mea-
sured by the standard ROC-AUC (Area Under the Receiver
Operating Characteristic Curve) score for binary classification
where higher score implies better performance. For TRUVEN



Model HF MIMIC-III
LR 0.636 ± 0.003 0.763 ± 0.004
DictLearn 0.634 ± 0.004 0.771 ± 0.006
DAPS 0.651 ± 0.002 0.794 ± 0.004
RNN 0.668 ± 0.004 0.807 ± 0.004
RETAIN 0.675 ± 0.003 0.817 ± 0.004
DDL 0.682 ± 0.004 0.819 ± 0.004
DDL w.o. decoder 0.669 ± 0.006 0.813 ± 0.004

Table 1: Averaged prediction accuracy (ROC-AUC) of DDL and
baseline methods (with standard deviation) evaluated on HF and
MIMIC-III datasets. Higher ROC-AUC implies better performance.

Model HF MIMIC-III
LR 34.3 ± 2.1 21.2 ± 1.9
DictLearn 49.3 ± 2.9 31.2 ± 3.0
DAPS 125.0 ± 5.6 86.4 ± 2.3
RNN 64.6 ± 8.4 25.6 ± 3.2
RETAIN 100.7 ± 10.1 79.4 ± 14.3
DDL 234.4 ± 21.3 178.3 ± 11.0
DDL w.o. decoder 183 ± 14.1 128.3 ± 6.0

Table 2: Averaged training time (sec) incurred by DDL and baseline
methods (with standard deviation) on HF and MIMIC-III datasets.

datasets, the final prediction is generated by combining the
results of individual binary classification tasks (one for each
variable in the patient’s last clinical visit). In particular, the top
k variables with largest predicted probabilities to be positive
are treated as positive labels while the others are associated
with negative labels in our multi-label prediction. Thus, the
performance of each method on TRUVEN dataset is measured
using the following top-k recall metric:

top-k recall ,
# of true positives in top k prediction

# of true positives
(11)

The averaged performance (with standard deviation) over 5
different runs of all tested methods are reported in Table 1 for
HF and MIMIC-III datasets, and in Table 3 for TRUVEN
dataset. The incurred training time for all methods are reported
in Table 2. The reported results shown that: (1) DDL consis-
tently outperforms all baseline methods in terms of prediction
accuracy (ROC-AUC) on all datasets, which demonstrates the
advantage of using a hybrid deep dictionary learning in predic-
tive phenotyping; (2) among the baselines, DL-based methods
perform significantly better than traditional ML baselines such
as LR and DictLearn, which justifies the choice of using
DL as the base model (in our framework) to be combined
with dictionary learning; and (3) DDL with decoder achieved
better results than DDL without decoder, thus supporting our
statement earlier that jointly training both supervised and un-
supervised components (instead of training them separately)
allow them to coordinate on a better data representation.

3.4 Comparison in Semi-Supervised Setting
To showcase the advantage of leveraging unlabeled data, we
design two scenarios to demonstrate it empirically. In the
first scenario, we fix the number of labeled data samples and
observe the changes in DDL’s and baseline methods’ perfor-
mance when the number of unlabeled data samples varies. The

Model Top-50 recall Top-30 recall Time
LR 0.753 ± 0.002 0.605 ± 0.002 43.0 ± 1.2
DictLearn 0.752 ± 0.002 0.610 ± 0.002 84.2 ± 2.0
DAPS 0.773 ± 0.003 0.621 ± 0.002 232 ± 34
RNN 0.783 ± 0.003 0.630 ± 0.002 113.0 ± 8.2
RETAIN 0.786 ± 0.007 0.632 ± 0.005 134.4 ± 12.0
DDL 0.791 ± 0.004 0.634 ± 0.003 624 ± 34
DDL w.o. decoder 0.780 ± 0.05 0.627 ± 0.005 427 ± 31

Table 3: Averaged prediction accuracy (top-k recall) and incurred
time (sec) of DDL and baseline methods (with standard deviation) on
TRUVEN dataset. Higher top-k recall implies better performance.

results are plotted in Figure 2, which show the tested methods’
average prediction accuracies of 3 independent runs and their
confidence intervals. It can be observed that across all datasets,
the prediction performance increases as more unlabeled data
is used for training, thus supporting our claim earlier that unla-
beled data can be exploited as an extra source of information
to improve performance of predictive phenotyping models.

In the second scenario, we fix the total number of training
data samples while varying the percentage of labeled samples
within the training set, and observe how the tested methods’
performance changes accordingly. From the results in Figure 3
above, it shows that DDL outperforms other methods most
significantly when the amount of labeled data is limited: when
this happens, the performance of RNN and RETAIN degrade
the most since they cannot make use of unlabeled data. DAPS
on the other hand can leverage unlabeled data and performs
better than RNN and RETAIN but still worse than DDL since
it does not train both supervised and unsupervised components,
thus being vulnerable to artifacts in unlabeled data.

4 Related Works
In this section, we briefly discuss the success use of deep
learning in predictive phenotyping. Choi et al. [2016a] used
Recurrent Neural Network (RNN) to modelling temporal data
in Electronic Health Record (EHR). Choi et al. [2016b]; Ma
et al. [2017]; Choi et al. [2017] uses attention mechanisms to
detect important visits and clinical variables. Choi et al. [2018]
utilized multilevel structures to modelling EHR data in a finer-
grained manner. Ma et al. [2018] extracts comprehensive
patient pattern via using time-aware neural architectures. Most
existing works only pay attention to labeled data. In this
paper, we attempt to improve the predictive phenotyping in an
orthogonal direction focused on leveraging unlabeled data.

5 Conclusion
This paper addressed the label-insufficiency issue in predic-
tive healthcare where unlabeled data are abundant but labeled
data is limited. To combine both labeled and unlabeled data
for better predictive performance, we propose a deep dictio-
nary learning (DDL) framework that utilizes unlabeled data
to learn more generalizable representation of data for the pre-
dictive model. For example DDL was evaluated on real-world
healthcare datasets (MIMIC-III, Heart Failure and Truven)
for disease prediction. The results consistently show that the
representations learned from unlabeled data generalize better
and improve the predictive accuracy.
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