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Abstract

Over recent years, i-vector-based framework has been proven to provide state-of-the-art performance in speaker
verification. Each utterance is projected onto a total factor space and is represented by a low-dimensional feature
vector. Channel compensation techniques are carried out in this low-dimensional feature space. Most of the
compensation techniques take the sets of extracted i-vectors as input. By constructing between-class covariance and
within-class covariance, we attempt to minimize the between-class variance mainly caused by channel effect and to
maximize the variance between speakers. In the real-world application, enrollment and test data from each user (or
speaker) are always scarce. Although it is widely thought that session variability is mostly caused by channel effects,
phonetic variability, as a factor that causes session variability, is still a matter to be considered. We propose in this
paper a new i-vector extraction algorithm from the total factor matrix which we term component reduction analysis
(CRA). This new algorithm contributes to better modelling of session variability in the total factor space.
We reported results on the male English trials of the core condition of the NIST 2008 Speaker Recognition Evaluation
(SREs) dataset. As measured both by equal error rate and the minimum values of the NIST detection cost function,
10–15% relative improvement is achieved compared to the baseline of traditional i-vector-based system.
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1 Introduction
In the last decade, Gaussian mixture model based on
universal background model (GMM-UBM) framework
has demonstrated strong performance in speaker verifi-
cation. It is commonly believed that the mean vectors of
GMMs represent the most characteristics of speakers [1],
which are obtained by using the maximum a posteriori
(MAP) adaptation. Traditional MAP (or relevance MAP)
treats each Gaussian component as a statistically inde-
pendent distribution, which leaves many drawbacks in the
real-world application: Only those components which are
observed in the speaker frames are adapted; if training
and testing sessions are too short or suffer from signifi-
cant phonetic variability, the performance of verification
may encounter an obvious degradation; on the other hand,
traditional MAP does not have solution to the effects of
channel distortion, especially when the enrollment and
test sessions are from different channels.
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Extended from GMM-UBM framework, factor analy-
sis (FA) technique [2, 3] attempts to model the speaker
components jointly. Each speaker is represented by the
mean supervector which is a linear combination of the
set of eigenvoices. Only a few hundreds of free parame-
ters need to be estimated, which ensures that the speaker
mean supervector converges quickly by a short duration
of utterance. Based on FA technique, joint factor analysis
(JFA) [4, 5] decomposes GMM supervector into speaker
component S and channel component C, JFA makes the
assumption that speaker component and channel compo-
nent are statistically independent, although it is known
by now that in this modelling, channel effects are not
speaker-independent (for example, it has been proven
that gender-dependent eigenchannel modelling is more
effective than gender-independent modeling [6]), JFA has
demonstrated superior performance for text-independent
speaker detection tasks in the past NIST Speaker Recog-
nition Evaluation (SREs).
Inspired by JFA approach, Dehak et al. [7] propose

a combination of speaker space and channel space. A
new low-dimensional space named total factor space is
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defined. In this new space, each utterance is represented
by a low-dimensional feature vector termed i-vector. The
idea of i-vector opens a new era to the analysis of speaker
and session variability. Many compensation techniques
and scoring methods have been proposed [6–9], which
have shown better results than JFA approach. Recently,
i-vector extraction with a preliminary length normaliza-
tion and probabilistic linear discriminant analysis (PLDA)
has become the state-of-the-art configuration for speaker
verification [6, 9].
However, despite the success of the i-vector paradigm,

its applicability in text-dependent speaker verification still
remains questionable. In the case that the phonetic con-
tent of enrollment and test sessions is same, we may
assert that only those components which are observed
in the speaker frames need to be adapted, but FA-
based techniques provide a global adaptation to all the
Gaussian components including those unobserved Gaus-
sian components, whose performance should be ques-
tionable compared with traditional MAP adaptation.
Currently, related papers have also shown that the tra-
ditional MAP approach is superior to the i-vector-based
ones [10–12].
Inspired by the drawback of i-vector in text-dependent

speaker verification, we attempt to give an analysis
that although FA-based i-vector approach offers better
performance in modeling phonetic variability, a global
adaptation to all the Gaussian components is not an opti-
mal adaptation method. In this paper, we still focus on
text-independent speaker verification, we propose a new
i-vector extraction algorithm termed component reduc-
tion analysis (CRA). Compared with the traditional MAP
adaptation that only adapts those observed Gaussian
components, CRA approach abandons those Gaussian
components which give the least contribution in mod-
eling speaker frames, length of each basis of total fac-
tor matrix is truncated while the dimensions of the
total factor space remain unchanged, extracted i-vectors
also remain unchanged. No modification is needed for
subsequent channel compensation and scoring meth-
ods. Experiments were carried out on the core con-
dition of NIST 2008 SREs. Experimental results show
that by applying CRA algorithm in the phase of i-vector
extraction, a 10–15% relative improvement is obtained
compared with the baseline system adopting traditional
i-vector algorithm and related channel compensation
techniques.
This paper is organized as follow. Section 2 describes the

construction of total factor matrix and the paradigm of i-
vector extraction. Section 3 analyzes and verifies that pho-
netic variability and phonetic imbalance widely exist in
speaker frames, and following this inference, we demon-
strate that conventional i-vector extraction paradigm
corresponding to a global adaptation of all Gaussian

components is not an optimal adaptation method. Hence,
an improved mechanism is introduced to compensate
phonetic variability and phonetic imbalance. In Section 4,
we propose our CRA algorithm applied in the i-vector
extraction phase. We also propose a zero-order Baum-
Welch statistics normalization approach to compen-
sate the effects of CRA algorithm. Experiments and
results are given in Section 5. Section 6 concludes the
paper.

2 Total factor space and i-vector extraction
Proposed by N. Dehak, in the i-vector framework, no sep-
arate modeling of speaker and channel space is made,
a single space named total factor space is constructed
to model speaker and channel variability jointly. Each
utterance is projected onto total factor space and is rep-
resented by a low-dimensional feature vector. The chan-
nel compensation techniques and scoring methods are
carried out in this low-dimensional space, as opposed to
the high-dimensional GMM supervector space for MAP
adaptation and JFA.
The basic idea of i-vector approach is that each speaker-

and channel-dependent GMM supervector M can be
modeled as:

M = m + Tw (1)

wherem is a speaker- and channel-independent supervec-
tor, whose value is often taken from UBM supervector. T
is the total factor matrix with low rank, which expands
a subspace containing speaker- and channel-dependent
information. w is a vector with a prior of standard Gaus-
sian distribution. Speaker frames of an utterance are rep-
resented by posterior estimation of w, the new feature
vectorw is named total factor, often referred to as identity
vector or i-vector. The process of training the total fac-
tor matrix is detailedly explained in [2], which is similar
as learning the eigenvoice matrix. In order to sufficiently
estimate T-Matrix, large quantity of development corpus
is necessary.

3 Phonetic variability analysis
Evolved from eigenvoice approach, i-vector approach
assumes speaker- and channel-dependent GMM super-
vector obeys a linear combination of the basis defined by
T-Matrix. The i-vector w can be defined by its posterior
distribution conditioned to the Baum-Welch statistics for
a given utterance. The posterior distribution is a Gaus-
sian distribution, and the mean vector of this distribution
is our i-vector. Following [3], the Baum-Welch statistics
are extracted using the UBM model. Suppose we have a
sequence of Ł frames

{
y1, y2, . . . , yL

}
and a UBM � com-

posed of C Gaussian components defined in some feature
space of dimension F. The Baum-Welch statistics for a
given speech utterance u are obtained by:
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Nc =
L∑

t=1
P (c|yt ,�) (2)

Fc =
L∑

t=1
P (c|yt ,�) yt (3)

where c = 1, . . . ,C is the Gaussian index and P(c|yt ,�)

corresponds to the posterior probability of mixture
component c generating the frame vector yt . (2) and
(3) are named zero-order and first-order Baum-Welch
statistics.
In the traditional MAP adaptation approach, the

adapted mean vector of a Gaussian component can be
written as:

Mc = r
Nc + r

mc + Nc
Nc + r

Fc
L

(4)

where Mc denotes the cth component of M, mc denotes
the cth component of UBM m, (1/L)Fc is the normalized
first-order Baum-Welch statistics, r is termed relevance
factor which is an empirical value and has to be manually
tuned. From Eq. (4), we can see that the posterior mean
vectors of the cth Gaussian component Mc is an interpo-
lation between the mean of UBM Gaussian component
mc and the normalized first-order Baum-Welch statistics
(1/L)Fc. Nc can be regarded as a conditioning factor, as
the amount of speaker frames observed by the component
c increases, Mc will get closer to the real statistical mean
vectors (1/L)Fc.
In the i-vector approach, assumed that we have obtained

the i-vector w for a given utterance u (the expression of
w is in Eq. (7), the process of calculating w is explained
in [2]), the adapted mean vector of a Gaussian component
can be written as:

Mc = mc + Tcw (5)

where Tc denotes the cth component of T. Tc can be
regarded as the total basis for the cth Gaussian com-
ponent. From Eq. (5), we can see that although the
zero-order Baum-Welch statistics of Gaussian compo-
nents vary from each other, i-vector approach adapts
the mean vector of each Gaussian component in a same
degree. In other words, we might say that the condition-
ing for each Gaussian component is identical, controlled
by w.
Although FA-based approaches have been proven to be

effective in compensating the phonetic variability, as we
have mentioned above, its performance is not so good
as the traditional MAP adaptation in text-dependent
speaker verification. An intuitive explanation could be
that not all the Gaussian components should be adapted
if the phonetic contents of enrollment and test are the
same, only those components which are observed in

speaker frames need to be adapted. Extended from text-
dependent verification to text-independent verification, a
rational inference could be that considering the sparsity
in the real-world application and imbalanced distribution
of speaker frames, it is better not to adapt those Gaussian
components which contribute least in modeling speaker
frames. Like we used to do in the traditional MAP adapta-
tion, as it is uncertain to perform a full adaptation to those
Gaussian components without enough observation
speaker frames, those Gaussian components with mini-
mum zero-order Baum-Welch statistics are not chosen to
join in the adaptation process.
In order to verify our thought, a statistical experiment

is designed based on the corpus from the core condi-
tion of NIST 2008 SREs. The core condition of the 2008
SREs is named short2-short3, each file is a 5-min tele-
phone conversation recording containing roughly 2min of
speech.
We randomly pick out 20 male recordings which are

all from different speakers, a male UBM model contain-
ing 1024 Gaussian components is used to extract the
zero-order Baum-Welch statistics. The configurations of
feature extraction and UBM are same as experiments
section.
All the values of zero-order statistics plotted in the Fig. 1

are sorted in ascending order. For simplicity, only four
lines of arbitrary 4 records out of 20 records above are
plotted. We can observe from Fig. 1 that the distribution
of the sorted zero-order statistics is similar to that of the
exponential families. The proportion of speaker frames
that each component occupies is obviously imbalanced.
Table 1 gives the contribution of the sum of top N Gaus-
sian components, N ranges from 100 to 1000. From
Table 1, we can observe that in the condition of a 1024
order UBM, for a 2-min speech frames, top 300 Gaus-
sian components are adequate to explain 61.8% speaker
frames, top 900 components can explain 99.5% speaker
frames, that is to say, 90% top Gaussian components are
almost enough to model all the speaker frames. The rest
10% Gaussian components can be regarded as redundant
ones, whose adapted mean vectors are not guaranteed to
be valid.
Extended from traditional MAP adaptation approach to

the i-vector adaptation approach, Gaussian components
are no longer assumed to be independently distributed,
total variability can be captured by a low-dimensional
factor space, it means that sparse training data can
give a global adaptation of total Gaussian components.
A graphical explanation will be given to show that
although total factor space approach is effective to com-
pensate phonetic variability, it is still not an optimal
method.
Figure 2 is a simplified description of MAP adap-

tation. For simplicity, we do not consider the overlap



Li et al. EURASIP Journal on Audio, Speech, andMusic Processing  (2015) 2015:18 Page 4 of 9

Fig. 1 The distribution of ascending zero-order Baum-Welch statistics of four records corresponding to each component

of adjacent Gaussian components and only two dimen-
sions out of F dimensions are shown, where F is the
dimensionality of mean vector of Gaussian component.
According to Eq. (4), as the amount of observing speaker
frames increases for a Gaussian component, the posterior
distribution of mean vectors of that component will get
closer to the real first-order statistics. On the other hand,
those components without enough observing speaker
frames only make a limited adaptation, or we can say that
they are not adapted. Analogically, Fig. 3 is a description of
i-vector adaptation. Evolved from eigenvoice framework,
adaptation is restricted within the subspace described by
the total factor matrix. Even in the case that training

Table 1 Proportion of zero-order Baum-Welch statistics of top N
Gaussian components

Number of N Percentage

100 0.2988

200 0.4791

300 0.6183

400 0.7288

500 0.8166

600 0.8848

700 0.9362

800 0.9732

900 0.9946

frames are sparse and imbalance, according to maxi-
mum likelihood estimation (MLE) of the EM auxiliary
function defined in the proof of proposition 3 in [2],
entire Gaussian components are adapted at same weight,
adapting weight corresponding to entire Gaussian compo-
nents is denoted by i-vector. Suppose that in an extreme
situation of Fig. 3, most of training frames (denoted by
green point) are observed by the upper Gaussian compo-
nent and the rest of frames are observed by the lower left
component, and following Eq. (5), we use Tc to denote
the sub-basis of total factor matrix T, where c denotes
corresponding Gaussian component (we use c = 1 to
denote the upper component, c = 2 and 3 to denote
the lower left and lower right ones); according to the
MLE based on i-vector framework, for components 1
and 2, we have credible first-order Baum-Welch statistics;
hence, corresponding fully adapted mean vectors mc +
wTc, c ∈ {1, 2} are also credible. However, for compo-
nent 3, we have an inaccurate first-order Baum-Welch
statistics (this inaccurate first-order Baum-Welch statis-
tics also corresponds to minimal zero-order Baum-Welch
statistics) because of the shortage of speaker frames;
hence, corresponding fully adaptedmean vectorm3+wT3
is questionable. Moreover, from Table 1, we can con-
clude that “excessive” Gaussian components are used to
model scarce speaker frames. Although those Gaussian
components with the most observing speaker frames con-
tribute most to the adaptation process, to those Gaussian
components without enough observing speaker frames, it
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Fig. 2 A brief figure description of MAP adaptation in sparse training
data. As upper Gaussian component has more speaker frames, which
corresponds to higher zero-order Baum-Welch statistics Nc , the mean
vector of upper component (black dot denotes the mean vector of
Gaussian component) will be sufficiently adapted to the normalized
first-order Baum-Welch statistics (red cross denotes the adapted mean
vector and red dashed ellipse denotes the adapted component). In
contrast, sparse speaker frames observed by lower left component
correspond to smaller zero-order Baum-Welch statistics and minor
adaptation. Lower right component remains still because it has no
speaker frame

is better to abandon them rather than give a suspectable
adaptation result.

4 Component reduction analysis
4.1 Implementation of component reduction analysis
Extended from our analysis above, we propose an
improved i-vector extraction algorithm which we term
it component reduction analysis. The basic idea of CRA
is that those Gaussian components with minimum zero-
order Baum-Welch statistics will not join in the posterior
estimation of i-vector. This section describes the imple-
mentation of CRA. In order to estimate i-vector, we need
to compute the centralized first-order Baum-Welch statis-
tics based on the UBM:

F̃c(u) = Fc(u) − Nc(u)mc (6)

The posterior estimation of i-vector for a given utterance
u can be represented using the following equation:

w = (
I + Tt�−1N(u)T

)−1 Tt�−1F̃c(u) (7)

where the process of calculatingw can be derived from [2],
N(u) is the diagonal matrix of dimension CF × CF whose
diagonal blocks are Nc(u)I, (c = 1, . . . ,C), I is the iden-
tity matrix of dimension F × F , F̃c(u) is a supervector of

Fig. 3 A brief figure description to FA-based i-vector adaptation in
sparse training data. Different from MAP adaptation in Fig. 2, in the
i-vector framework, all components are adapted at the same weight.
The adapted mean vectors of upper and lower left components are
credible because we indeed have relative speaker frames, but the
adaptation of lower right component is questionable because it
suffers from a shortage of speaker frames, whose first-order
Baum-Welch statistics is inaccurate

dimension CF × 1 obtained by concatenating all the cen-
tralized first-order Baum-Welch statistics F̃c(u). Here� is
a diagonal covariance matrix of dimension CF×CF that is
estimated during the training of T. It models the residual
variabilities not captured by the total variability matrix T.
Then the zero-order Baum-Welch statistics are sorted

in descending order, we use c′
1 to denote the component

with maximum value of zero-order Baum-Welch statis-
tics, c′

2 to denote the component with second maximum
value of zero-order Baum-Welch statistics, by that anal-
ogy, c′

C denotes the component with minimum value of
zero-order statistics. A sign function S(c) is defined as:

S(n) =
{
1 if n ≤ R
0 if n > R (8)

where R is a threshold that has to be manually tuned,
which denotes the number of the components having to
be discarded, and the new zero-order Baum-Welch statis-
tics is denoted as Nc′ (u)S(c′

) where c′ ∈ {c′
1, c

′
2, . . . , c

′
C}.

The update formula for the w̃ is:

w̃=
(
I +

C∑
n=1

Nc′n(u)S(n)Ttc′n
�−1
c′n
Tc′n

)−1 C∑
n=1

S(n)Ttc′n
�−1
c′n
F̃c′n(u)

(9)
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=
(
I +

R∑
n=1

Nc′n(u)Tt
c′n

�−1
c′n

Tc′n

)−1 R∑
n=1

Tt
c′n

�−1
c′n

F̃c′n(u)

(10)

in which Tc′n is the sub-matrix of the c′
nth block of T,

Nc′n(u)�−1
c′n

is the sub-matrix of the diagonal part of the c′
n

block of�−1N(u), and F̃c′n(u) is the sub-matrix of the c′
nth

row block of F̃(u).

4.2 Zero-order Baum-Welch statistics normalization
Although those Gaussian components contributing least
in modeling, speaker frames are removed from the
adaptation formula (10), the implementation of CRA
also encounters a defect. The zero-order Baum-Welch
statistics corresponding to those removed Gaussian
components is also removed from (10), whereas in the
adaptation process of i-vector, we wish to make full
use of the information of total speaker frames. For
any Gaussian component c, corresponding zero-order
Baum-Welch statistics Nc(u) and first-order Baum-Welch
statistics Fc(u) are calculated from total speaker frames;
hence, it seems that the best solution to cope with this
defect is that we re-calculate total zero-order and first-
order Baum-Welch statistics using the top R Gaussian
components selected by CRA. However, it will bring
almost double computational amount in the procedure
of Baum-Welch statistics extraction, so we propose an
approximation approach to compensate the loss of the
zero-order Baum-Welch statistics which we termed zero-
order Baum-Welch statistics normalization. A normaliza-
tion coefficient is defined as:

k = N(u)/

C∑
n=1

S(n)Nc′n(u) = N(u)/

R∑
n=1

Nc′n(u) (11)

After the normalization process, the update formula for
the w̃ is:

w̃ =
(
I +k

R∑
n=1

Nc′n(u)Ttc′n
�−1
c′n
Tc′n

)−1 R∑
n=1

Tt
c′n

�−1
c′n

F̃c′n(u)

(12)

This kind of normalization ensures that after applying
CRA, the summation of zero-order Baum-Welch statistics
of top R Gaussian components is identical to the sum-
mation of zero-order Baum-Welch statistics not applying
CRA, this summation also equals to the number of total
speaker frames. Although this normalization seems to
be a slightly rough approximation, experimental result
in the next section shows that slight improvement is
obtained after applying zero-order Baum-Welch statistics
normalization.

5 Experiments
5.1 Databases
All experiments were carried out on the core condition of
NIST 2008 SREs. NIST 2005 and NIST 2006 were used
as development datasets. Our experiments are based on
male telephone data (det6) and English-only male tele-
phone data (det7) for both training and testing. The core
condition of the 2008 SREs contains 648 males.

5.2 Experimental setup
Our experiments operated on the Mel frequency cepstral
coefficients (MFCCs), and speech/silence segmentation
was performed according to the index of transcriptions
provided by the NIST with its automatic speech recog-
nition (ASR) tool. The MFCC frames are extracted using
a 25-ms Hamming window, every 10-ms step, 19 order
coefficients together with log energy, 20 first-order delta,
and 10 second-order delta were appended, equal to a total
dimension of F = 50, where we follow the configura-
tion of [13]. All frames were subjected to cepstral mean
normalization (CMN) to obey a (0, 1) distribution.
We used a male UBM containing 1024 Gaussians and

the order of total factor matrix T is 400, the corpus from
the 2005 1conv4w transcription index and 2006 1conv4w
transcription index was used to train the UBM with a
total length of 17 h of speech from about 550 speakers.
The corpus from the 2005 8conv4w and 2006 8conv4w
transcription index was used as the development datasets
to train the total factor matrix because sessions for each
speaker consists of recordings from eight different micro-
phones which is capable of modeling the speaker and
channel variability. The development set of i-vectors was
also extracted from the same corpus set which was used
to train the T-Matrix. All the decision scores were given
without normalization.
In our experiment, total sets of i-vectors were extracted

with our CRA algorithm, including development set,
enrollment set, and test set. We also performed experi-
ments that only enrollment and test sets were extracted
using CRA algorithm, and results show that both
approaches gave better results than the baseline of tra-
ditional i-vector extraction approach, but the results of
whole extraction (development set, enrollment set and
test set) are best. The threshold R is tuned manually.

5.3 Results and analysis
Table 2 gives comparison results for male portion of core
condition of NIST 2008 SREs. LDA and eigen factors
radial (EFR) are taken as the compensation approaches,
cosine scoring is taken as scoring method, and statistical
results are given in terms of equal error rate (EER) and
normalized minimum decision cost functions (DCF) for
the two operating points as defined by NIST for the SRE
2008 evaluations.
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Table 2 Comparison of cosine scoring with different compensation and normalization techniques

Male

English trials All trials

EER( %) DCF EER(%) DCF

LDA(210) 2.50 0.0246 5.57 0.0538

LDA(210), R = 1000 2.48 0.0245 5.48 0.0533

LDA(210), R = 975 2.31 0.0226 5.37 0.0521

LDA(210), R = 950 2.27 0.0220 5.24 0.0514

LDA(210), R = 925 2.23 0.0211 5.18 0.0510

LDA(210), R = 900 2.15 0.0207 5.10 0.0503

LDA(210), R = 875 2.30 0.0224 5.12 0.054

LDA(210), R = 850 2.53 0.0250 5.17 0.510

EFRnorm, LDA(210) 2.35 0.0233 5.40 0.0525

EFRnorm, LDA(210), R = 900 2.29 0.0225 5.19 0.0512

All results are obtained with cosine scoring, LDA dimension of 210, and without EFR normalization. The baselines of our systems are 2.35 % for EER in English trials and 5.40 %
for EER in all trials (italics), where EFR normalization and LDA = 210 are applied, best results after applying CRA are 2.15 % for EER in English trials and 5.10 % for EER in all trials
(italics), where only LDA = 210 are applied

For our system, best LDA dimension is 210 (in the
case that dimension of total factor matrix is 400), stan-
dardization before LDA compensation (EFR norm four
iterations) enhances the performance and gives a base-
line of 2.35% for EER and 0.0233 for DCF in the English
trials (det7), 5.40% for EER and 0.0525 for DCF in
the multi-language trials (det6, all trials). After apply-
ing CRA, as we reduce the number of components,
EER and DCF decrease slightly, the best performance
is obtained when the threshold R is 900, which gives
a minimum EER of 2.15 and minimum DCF of 0.0207
in the English trials and a minimum EER of 5.10 and
minimum DCF of 0.0503 in the multi-language tri-
als. Here what should be highlighted is that the opti-
mal dimension of LDA after applying CRA algorithm
is still unchanged, the reason that CRA has no effect
on the optimal choice of dimension of LDA is that the
CRA aims at compensating the phonetic variability and
phonetic imbalance, whereas LDA aims at compensating
the channel variability. However, the best performance is
obtained without EFR normalization. Even though CRA

still works in the case of applying EFR normalization, its
performance is not so good as in the case of without
EFR normalization both in English trials and in multi-
language trials. One possible reason for this result is that
the performance of EFR normalization is highly depen-
dent on the scale of development dataset, and in our
experiment, we did not offer that much corpus to con-
struct full-scale between- and within-speaker covariance
matrices.
Table 3 gives the performance comparison of zero-

order Baum-Welch statistics normalization under various
threshold R. As the threshold R decreases, the effective-
ness of zero-order Baum-Welch statistics normalization
becomes more obvious. The reason is that the value of
compensation coefficient k in (11) is getting larger as
more Gaussian components are removed from (10), which
provides stronger compensation effect to the loss of zero-
order Baum-Welch statistics.
Figure 4 shows a comparison of DET curves

(det7) of LDA + EFR baseline and our improved
baseline by applying CRA algorithm without EFR

Table 3 Comparison of results with and without zero-order Baum-Welch statistics normalization

Male

English trials All trials

EER( %) DCF EER(%) DCF

R = 1000, no zero-order norm 2.48 0.0245 5.48 0.0533

R = 1000, with zero-order norm 2.48 0.0245 5.48 0.0533

R = 950, no zero-order norm 2.29 0.0221 5.25 0.0516

R = 950, with zero-order norm 2.27 0.0220 5.24 0.0514

R = 900, no zero-order norm 2.19 0.0211 5.12 0.0506

R = 900, with zero-order norm 2.15 0.0207 5.10 0.0503

All results are obtained with cosine scoring, LDA dimension of 210, and without EFR normalization
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Fig. 4 DET curves comparison between LDA and cosine scoring baseline and component reduction analysis improvement

normalization. A 10–15% relative improvement is
obtained.

6 Conclusions
This paper proposes an improved i-vector extraction algo-
rithm. We analyze the intrinsic sparsity and imbalanced
distribution of speaker frames, those redundant Gaus-
sian components, are discarded in the i-vector extraction
phase so as to compensate the phonetic variability. We
attempt to make a preliminary beginning to combine
the advantages of traditional MAP adaptation in text-
dependent speaker verification and i-vector-based frame-
work in text-independent speaker verification. Besides
speaker variability and channel variability, phonetic vari-
ability, as another impact factor, is taken into considera-
tion. We carried out experiments on the core condition
of male portion of NIST 2008 SREs. Experimental results
show that a 10–15% relative improvement is obtained.
Despite the effectiveness of our CRA algorithm, there

exists many questions to be solved and be explained. First
is the conflict of our CRA algorithm and the EFR normal-
ization. More experiments have to be designed to explore
the relationship and compatibility of this two techniques.
Second issue is that the threshold R of the CRA is a
parameter that has to be tuned manually, which is highly
dependent on the length of speech frames, R = 900

is an optimal value in the core condition of NIST 2008
SREs, but we cannot give a similar configuration in the
female portion, so do in the conditions like 10sec-10sec
and short2-10sec of NIST 2008 SREs dataset, an adapted
adjustment of the threshold R has to be proposed to make
speaker verificationmore practical. On the other hand, we
expect our CRA algorithm based on i-vector framework
may improve the performance of i-vector-based system in
text-dependent speaker verification.
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