
SIPF: Sampling Method for Inverse Protein Folding
Tianfan Fu

Georgia Institute of Technology

Atlanta, GA, USA

Jimeng Sun

University of Illinois Urbana-Champaign

Urbana, IL, USA

ABSTRACT
Protein engineering has important applications in drug discovery.

Among others, inverse protein folding is a fundamental task in pro-

tein design, which aims at generating protein’s amino acid sequence

given a 3D graph structure. However, most existing methods for

inverse protein folding are based on sequential generative models

and therefore limited in uncertainty quantification and exploration

ability to the entire protein space. To address the issues, we propose

a sampling method for inverse protein folding (SIPF). Specifically,
we formulate inverse protein folding as a sampling problem and

design two pretrained neural networks as Markov Chain Monte

Carlo (MCMC) proposal distribution. To ensure sampling efficiency,

we further design (i) an adaptive sampling scheme to select vari-

ables for sampling and (ii) an approximate target distribution as a

surrogate of the unavailable target distribution. Empirical studies

have been conducted to validate the effectiveness of SIPF, achiev-
ing 7.4% relative improvement on recovery rate and 6.4% relative

reduction in perplexity compared to the best baseline.

CCS CONCEPTS
• Computing methodologies→ Continuous space search.

KEYWORDS
protein design, sampling method, protein engineering, inverse pro-

tein folding, drug discovery

ACM Reference Format:
Tianfan Fu and Jimeng Sun. 2022. SIPF: Sampling Method for Inverse Pro-

tein Folding. In Proceedings of the 28th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining (KDD ’22), August 14–18, 2022, Washington,
DC, USA. ACM, Washington DC, USA, 11 pages. https://doi.org/10.1145/

3534678.3539284

1 INTRODUCTION
Drug discovery is a highly complex optimization process that needs

to fulfill multiple objectives. An ideal drug candidate should possess

high target binding efficacy, balanced biophysical and biochemical

properties, and low cytotoxicity [12, 18]. Biologics are an important

class of therapeutics because of their high affinity, lower toxicity,

and higher safety compared to small molecules. Eight of the top

10 best-selling drugs in 2018 were biologics [28]. Because biologics

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00

https://doi.org/10.1145/3534678.3539284

drugs are human-made proteins, protein engineering has attracted

lots of attention for biologics development.

In many protein engineering applications, the desired 3D struc-

ture with a useful function was first observed before identifying

the amino acid sequence. The task becomes designing an amino

acid sequence that can properly fold into the desired 3D struc-

ture [20, 29, 41]. The problem is named inverse protein folding, which
often requires machine learning models due to the complex nature

of the task [20, 28, 41, 42]. Most existing approaches [20, 32, 37, 42]

leverage autoregressive (sequential) generative model and learn

a mapping from a 3D graph structure to an amino acid sequence.

To predict the target amino acid sequence sequentially, different

network architectures have been proposed to represent 3D protein

structures, e.g., multiple structured transformers with multi-head

self-attention components [20], three-dimensional convolutional

neural network (3DCNN) [32, 42], graph convolutional network

(GCN)[37]. However, several limitations (L1 and L2) remain in

these existing methods. (L1) Lack of uncertainty quantification
in the protein space: Generative models are mostly based on

maximum likelihood learning, which uses point estimation and

has difficulty in quantifying the uncertainty. (L2) Incremental
generation degradation during sequential generation: these
auto-regressive generative models generate amino acid sequences

sequentially. The later amino acids depend heavily on the already

generated ones thus, the error may accumulate during generation.

To alleviate these challenges, we proposed the Sampling method

for Inverse Protein Folding (SIPF). The main contributions are: (1)

Uncertainty quantification (address L1): To quantify uncertainty,

we formulate inverse protein folding as a Markov Chain Monte

Carlo (MCMC) sampling problem (Sec 3.1), where pretrained neural

networks are used as MCMC proposal distribution (Sec 3.2), and an

approximate target distribution is designed (Sec 3.4). (2) Adaptive
sampling (address L2): we design an adaptive sampling method to

sample more thoroughly at the variables
1
with high uncertainty.

The designed sampler allows random and weighted scan over all the

amino acids and provides more flexibility than the sequential gen-

eration (Sec 3.3). (3) Theoretical results guarantee that the SIPF’s
samples approximately follow the target distribution (Sec 3.6). We

also conduct a thorough experiment to show the superiority of

SIPF, which obtains 7.4% relative improvement on recovery rate

and 6.4% relative reduction in perplexity (Sec 4).

2 RELATEDWORK
Inverse Protein Folding. The target of inverse protein folding is

to design an amino acid sequence that can properly fold into the

input 3D structure [20, 29]. In recent years, deep learning methods

have become state-of-the-art methods on inverse protein folding

task. For example, [20] utilized multiple structured transformers

1
In this paper, a variable corresponds to an amino acid.

https://doi.org/10.1145/3534678.3539284
https://doi.org/10.1145/3534678.3539284
https://doi.org/10.1145/3534678.3539284

KDD ’22, August 14–18, 2022, Washington, DC, USA Tianfan Fu and Jimeng Sun

withmulti-head self-attention components; [32, 42] leveraged three-

dimensional convolutional neural network (3DCNN); [37] trans-

form a 3D graph structure (the target backbone protein structure)

into a 2D graph (using adjacency matrix instead of 3D coordinates

of nodes) and apply graph convolutional network (GCN) to obtain

embeddings for nodes and edges; [7] jointly learns a sequence em-

bedding using a transformer and a fold embedding from the density

of secondary structural elements in 3D voxels. However, these gen-

erative models are mainly based on maximum likelihood learning

and generate amino acid sequences in autoregressive manner, thus

suffering from limitations as discussed (L1, L2 in Sec 1).

Protein Sequence Learning. There is also a parallel research

line on (unconditional) amino acid sequence learning, including

protein sequence representation learning [2, 5, 6, 17, 18, 26] and

protein sequence generation [1, 21, 24, 27, 34, 36, 39]. The target

of protein representation learning is to learn a semantically rich

embedding for protein sequence, which leverage different kinds of

deep learning models, e.g., Recurrent Neural Network (RNN) [2],

Convolutional Neural Network (CNN) [18], bidirectional long short-

term memory (bi-LSTM) enhanced by structural information [5];

self-supervised contrastive learning method [17, 26], Bidirectional

Encoder Representations from Transformers (BERT) based pretrain-

ing approach [6]. On the other hand, deep learning models are also

widely used in protein sequence generation, e.g., sequence level gen-

erative adversarial network (GAN) [34], sequence-level variational

auto-encoder (VAE) [36], Long Short TermMemory (LSTM) [1], con-

stitutive motifs level Restricted Boltzmann Machine [39], geometric

graph neural network [21, 27], ensemble gradient method [24].

2.1 Background: Markov Chain Monte Carlo
(MCMC)

Sampling methods (a.k.a., Bayesian sampling methods) are appeal-

ing in their ability to capture uncertainty and avoid overfitting,

compared with maximum likelihood learning methods that lever-

age point estimation [25, 40]. Markov Chain Monte Carlo (MCMC)

methods comprise a class of methods that sample from the target

distribution [25]. Specifically, suppose we want to sample from

the target distribution over 𝑥 , denoted 𝑃 (𝑥). MCMC constructs

a Markov chain that has target distribution 𝑃 (𝑥) as its equilib-
rium distribution. We briefly review three related MCMC methods:

(i) Metropolis-Hastings algorithm is a mainstream MCMC ap-

proach [25]. The initialization (i.e., 𝑥 (0)) of Metropolis-Hastings

algorithm can be a random point. At the 𝑡-th iteration, given the

previous sample 𝑥 (𝑡−1) , there are three steps: (1) generate proposal
for the next iteration via 𝑥 ′ ∼ 𝑞(·|𝑥 (𝑡−1)), where 𝑞(·|𝑥 (𝑡−1)) is the
MCMC proposal distribution, conditioned on 𝑥 (𝑡−1) . A usual choice

is to let 𝑞(·|𝑥 (𝑡−1)) be a Gaussian distribution centered at 𝑥 (𝑡−1) .
(2) evaluate the acceptance rate

A(𝑥 (𝑡−1) −→ 𝑥 ′) = min

{
1,

𝑃 (𝑥 ′)𝑞(𝑥 (𝑡−1) |𝑥 ′)
𝑃 (𝑥 (𝑡−1))𝑞(𝑥 ′ |𝑥 (𝑡−1))

}
. (1)

(3) accept the proposal 𝑥 ′ with probability A(𝑥 (𝑡−1) −→ 𝑥 ′). If ac-
cept, 𝑥 (𝑡) = 𝑥 ′; otherwise, 𝑥 (𝑡) = 𝑥 (𝑡−1) . Metropolis-Hastings

algorithm can be applied to any probability distribution. How-

ever, it suffers from slow mixing rate due to the random walk

behaviour [25, 40]. For example, Gaussian based proposal distribu-

tion exhibited random walk beheviour, which is especially severe

when 𝑥 ’s dimension is high [25]. (ii) Gibbs sampling is another

popular MCMC approach [13, 14]. Suppose the variable 𝑥 is de-

composed as 𝑥 = [𝑥1, · · · , 𝑥𝑑], Gibbs sampling cycles through all

the variables 𝑥1, · · · , 𝑥𝑑 and sample each one from its distribu-

tion conditioned on the current values of all other variables, for

example, when sample 𝑖-th dimension, it uses the conditional distri-

bution of 𝑥𝑖 (conditioned on the remaining variables) 𝑥
𝑖
∼ 𝑃𝑖 (·| 𝑥−𝑖),

where 𝑥−𝑖 = [𝑥1, · · · , 𝑥𝑖−1, 𝑥𝑖+1, · · · , 𝑥𝑑] represents all other vari-
ables. Gibbs sampling suppresses the random-walk behaviour in

Metropolis-Hastings algorithm and is more efficient, but it requires

the conditional distribution 𝑃𝑖 (·|𝑥−𝑖) to be analytically tractable,

which is usually restrictive. (iii) Metropolis-Hastings within
Gibbs sampling (mixture of i and ii) combines the advantage

of Metropolis-Hastings algorithm and Gibbs sampling [25]. Specif-

ically, like Gibbs sampling, it cycles through 𝑥1, · · · , 𝑥𝑑 . Unlike
Gibbs sampling, when conditional probability 𝑃𝑖 (𝑥𝑖 | 𝑥−𝑖) is ana-
lytically intractable, it leverages Metropolis-Hastings algorithm to

sample from 𝑃𝑖 (𝑥𝑖 | 𝑥−𝑖). In this paper, we design a novel Metropolis-

Hastings within Gibbs sampling method. The proposed method is

different from traditional Metropolis-Hastings within Gibbs sam-

pling method in the following two aspects: (1) our method cycles

through all the variables with random order and adaptive weights

so that we are able to sample more intensively at the variables with

higher uncertainty. In contrast, existing methods cycle through all

the variables in a deterministic order or random order with uniform

weight. This aspect will be elaborated in Sec 3.3. (2) We design an

approximate (biased) target distribution as a surrogate of the target

distribution, since the target distribution is not available. A related

method is pseudo-marginal MCMC [3], where the evaluation of the

target distribution is replaced by its unbiased estimator. Pseudo-

marginal MCMC is useful when the target density is not available

analytically, e.g., latent variable models [3]. Differently, our method

uses a biased estimator to estimate the target distribution, which is

more challenging. It will be described in Sec 3.4.

3 SIPFMETHOD
Overview. We describe SIPF in the following order: (1) Problem
formulation: We describe the inverse protein folding task (Defini-

tion 1) and formulate it as a Markov Chain Monte Carlo (MCMC)

sampling problem (Sec 3.1). (2) MCMC proposal distribution
is a mixture of two pretrained neural networks: (i) Equivariant

Graph Neural Networks (EGNN); (ii) Bidirectional Encoder Repre-

sentations from Transformers (BERT) model (Sec 3.2). (3)Adaptive
sampling is designed to adaptively assign more sampling budgets

to the amino acids with more uncertainty (Sec 3.3). (4) Approx-
imate target distribution 𝑃 (S) is designed as surrogate of the

unavailable target distribution to conduct Metropolis-Hastings al-

gorithm (Sec 3.4). (5) SIPF pipeline (Sec 3.5). (6) Theoretical
analysis guarantee that the SIPF’s samples approximately follows

the target distribution under certain assumptions (Sec 3.6).

3.1 Problem Formulation
This section formulates the inverse protein folding task. We start

with some basic notations about protein structures. We represent a

SIPF: Sampling Method for Inverse Protein Folding KDD ’22, August 14–18, 2022, Washington, DC, USA

protein with three structures: a) Amino acid sequence (a.k.a. pri-

mary structure), b) secondary structure sequence, and c) a 3D graph

structure. They describe the structure of a protein at different levels

of complexity. Suppose we have 𝑁 amino acids in a protein graph,

each amino acid corresponds to a node in 3D graph structure, a

token in the amino acid sequence and secondary structure sequence.

Table 1: Mathematical notations and descriptions.

Notations Descriptions

𝑁 number of amino acids in proteins.

𝑉 set of all the amino acids.

𝑔𝑖 coordinate of the 𝑖-th node in 3D graph G.

G = (𝑔1, · · · , 𝑔𝑁) 3D graph structure (𝑁 nodes with coordinates).

s𝑖 ∈ 𝑉 The 𝑖-th amino acid in the sequence S.
S = (s1, · · · , s𝑁) Sequence of amino acid (length 𝑁).

S<𝑖 the first 𝑖 − 1 amino acids in the sequence S.
S−𝑖 = (s1, · · · , s𝑖−1,

amino acid sequence without 𝑖-th amino acids𝑖+1, · · · , s𝑁)
𝑃 (S|G) target distribution of S given G.

𝑄𝜃 (s𝑖 |S−𝑖 ,G) MCMC proposal distribution, conditional prob. of s𝑖
∥𝑧∥ 𝑙2 norm of the vector 𝑧

𝐿1 Number of layers in EGNN.

m(𝑙)
𝑖

message vector of node 𝑖 at 𝑙-th layer;

m(𝑙)
𝑖 𝑗

message vector of edge from 𝑖 to 𝑗 at 𝑙-th layer;

e(𝑙)
𝑖

𝑖-th node’s embedding at 𝑙-th layer;

x(𝑙)
𝑖

𝑖-th node’s position embeddings at 𝑙-th layer;

𝐻1 (·), 𝐻2 (·), 𝐻3 (·) embedding in BERT.

𝐿2 Number of transformer layers in BERT.

𝛾 hyperparameter Eq. 9

1(·) Indicator function

Distance(·, ·) Distance between two amino acid sequences (Eq. 12)

q = [𝑞1, · · · , 𝑞𝑁] sampling weight for each amino acid,

∑𝑁
𝑖=1 𝑞𝑖 = 1.

𝜆 > 0 hyperparameter in optimizing 𝑞 (Eq. 14)

A(S −→ S′) acceptance rate from state S to S′ (Eq. 21)
𝑃 (·) approximate target distribution (Eq. 18)

Definition 1 (Amino acid sequence (a.k.a. primary structure)). We

use S = (s1, · · · , s𝑁) to denote the amino acid sequence, a.k.a.

primary structure. The length is 𝑁 , s𝑖 represents the 𝑖-th token

(i.e., amino acid) in the sequence. There are 20 categories of natural

amino acids, e.g., Glycine, Valine, Leucine, etc. The list of all the

amino acids and their frequencies is provided in Appendix. The set

of all amino acids is denoted 𝑉 , |𝑉 | = 20.

Definition 2 (Secondary structure sequence). We use Z = (z1, · · · ,
z𝑁) to denote the secondary structure sequence. The length is also

𝑁 , z𝑖 represents the kind of secondary structure that 𝑖-th amino acid

belongs to. There are totally 8 categories of secondary structures,

e.g., 𝛼-helix, Turn, Bend, 𝜋-helix, 3-10 helix, Strand, Isolated beta-

bridge residue and None [28]. The list of all the secondary structures

and their frequencies are provided in Appendix.

Definition 3 (3D graph structure of protein (a.k.a. tertiary struc-

ture)). We use G = (𝑔1, · · · , 𝑔𝑁) to denote the 3D graph structure

of the protein. There are 𝑁 nodes in the graph, 𝑔𝑖 represents the

3D coordinate of the 𝑖-th node. An amino acid consists of an 𝛼

(central) carbon atom linked to an amino group, a carboxyl group,

a hydrogen atom, and a variable component called a side chain. We

use the position of 𝛼 carbon atom as the coordinate of the amino

acid, following [20, 21]. 3D graph structure is also known as the

backbone structure, which belongs to the tertiary structure of a

protein.

Problem 1 (Inverse Protein Folding). Given the 3D graph structure

G, inverse protein folding is to recover the amino acid sequence

S. That is, our objective is to find an amino acid sequence S =

(s1, · · · , s𝑁) (s𝑖 ∈ 𝑉) that maximize the likelihood function 𝑃 (S|G),
argmaxS=(s1,· · · ,s𝑁) 𝑃 (S|G), (2)

Given the tertiary structure (i.e., 3D graph G), the secondary struc-

ture Z is available [12]. Both G and Z are the input of the problem.

Therefore, 𝑃 (S|G) = 𝑃 (S|G,Z). We use 𝑃 (S|G) for simplicity.

Existing methods mostly leverage deep generative models to

generate the amino acid sequence in an auto-regressive way [7,

20, 32, 37, 42], where the likelihood function is decomposed as

𝑃 (S|G) = ∏𝑁
𝑖=1 𝑃 (s𝑖 |S<𝑖 ,G), where S<𝑖 denoted all the amino acids

before the 𝑖-th amino acid, i.e., the first 𝑖-1 amino acids in the

sequence. However, as mentioned in L1 and L2 in Sec 1, several lim-

itations remain: (i) fails to capture uncertainty and (ii) incremental

generation degradation during sequence generation.

Formulation: To tackle these issues, we formulate Problem (2)

into a sampling problem, i.e., drawing samples from the target
distribution 𝑃 (S = (s1, · · · , s𝑁) |G). Our goal is to recover the amino

acid as much as possible. We define recovery rate as the percentage

of recovered amino acids,

R(S, S
truth

) =
(∑︁𝑁

𝑖=1
1
(
(S)𝑖 = (S

truth
)𝑖
))
/|S

truth
|, (3)

where S and S
truth

are the generated and groundtruth amino acid

sequences respectively and have the same length. (S)𝑖 and (S
truth

)𝑖
are the 𝑖-th amino acids in sequence S and S

truth
, respectively. 1(·)

is the indicator function. The target distribution is defined as

𝑃 (S|G) ∝ exp(𝛿R(S, S
truth

)), (4)

where 𝛿 > 0 is the scaling hyperparameter. The target distribution

𝑃 (S|G) is unavailable because the groundtruth amino acid sequence

S
truth

is unknown. Thus, it is hard to directly sample the target

distribution using traditional Markov Chain Monte Carlo (MCMC)

sampling methods (Sec 2.1).

3.2 MCMC Proposal distribution: Pretrained
Neural Networks

This section describes MCMC proposal distribution 𝑄𝜃 (s𝑖 |S−𝑖 ,G),
which is a mixture of two pretrained neural networks, including (1)

equivariant graph neural network (geometric graph level); (2) BERT

model (amino acid sequence level). Both models are pretrained in

self-supervised manner [17]: predicting the category of masked

node/token (i.e., amino acid) conditioned on the remaining variables

(nodes/tokens/amino acids) and 3D graph structure.

3.2.1 Equivariant Graph Neural Network (EGNN) for 3D geomet-
ric graph. We leverage the state-of-the-art equivariant graph neu-

ral network (EGNN) proposed in [35]. It is translation-, rotation-

and reflection- invariant with respect to an input set of 3D points.

That is, the translation, rotation or reflection on the coordinates

would not change the output. Node embeddings at the 𝑙-th layer are

{e(𝑙)
𝑖

}𝑁
𝑖=1

, where 𝑙 = 0, 1, · · · , 𝐿1, 𝐿1 is number of layers in EGNN.

The initial node embeddings {e(0)
𝑖

}𝑁
𝑖=1

embed the categories of

amino acids and are randomly initialized. The target amino acid

(s𝑖) is masked. Each kind of amino acid (including the masked one)

KDD ’22, August 14–18, 2022, Washington, DC, USA Tianfan Fu and Jimeng Sun

Figure 1: The whole pipeline includes the following four key steps in a single iteration: (1) select amino acid (i.e., variable)
based on adaptive weight q as described in Sec 3.3; (2) construct MCMC proposal distribution (masking the selected node and
feeding the remaining structure into EGNN and BERT), which is a mixture of EGNN and BERT predictions as described in
Sec 3.2; (3) sample from the MCMC proposal distribution, accept or reject the proposal, as described in Sec 3.4, update adaptive
weight q (Sec 3.3). (4) generate the new amino acid sequence and jump to the next iteration.

corresponds to a node embedding. Coordinate embeddings at the

𝑙-th layer are denoted {x(𝑙)
𝑖

}𝑁
𝑖=1

. The initial coordinate embeddings

{x(0)
𝑖

}𝑁
𝑖=1

are the real 3D coordinates of all the nodes, i.e., {𝑔𝑖 }𝑁𝑖=1.
The following equation defines the update rule at the 𝑙-th layer

(𝑙 = 1, · · · , 𝐿1):

m(𝑙+1)
𝑖 𝑗

= MLP1

(
e(𝑙)
𝑖
, e(𝑙)

𝑗
, | |x(𝑙)

𝑖
− x(𝑙)

𝑗
| |2
)
,

x(𝑙+1)
𝑖

= x(𝑙)
𝑖

+
∑︁

𝑗≠𝑖

(
x(𝑙)
𝑖

− x(𝑙)
𝑗

)
MLP2

(
m(𝑙)
𝑖 𝑗

)
,

m(𝑙+1)
𝑖

=
∑︁

𝑗
m(𝑙+1)
𝑖 𝑗

, e(𝑙+1)
𝑖

= MLP3

(
e(𝑙)
𝑖
,m(𝑙+1)

𝑖

)
,

(5)

where MLP1 (·),MLP2 (·),MLP3 (·) are all two-layer multiple layer

perceptrons (MLPs) with ReLU activation. Within the 𝑙-th layer,

m(𝑙)
𝑖 𝑗

represent the message vector for the edge from node 𝑖 to

node 𝑗 ; m(𝑙)
𝑖

represents the message vector for node 𝑖 , x(𝑙)
𝑖

is the

position embedding for node 𝑖; e(𝑙)
𝑖

is the node embedding for

node 𝑖 . Suppose we are given a target node whose conditional

probability must be evaluated as proposal distribution. We only

consider its spatial 𝑘-nearest neighbors as the input graph structure

of EGNN and omit the other nodes, following [20, 32]. Regarding

edge (𝑖, 𝑗), all the possible combinations of (𝑖, 𝑗) are considered,
which is equivalent to a fully-connected 3D graph. When the target

node is s𝑖 , we attach an MLP structure to the last layer’s node

embedding of s𝑖 to build EGNN proposal distribution,

EGNN(s𝑖 |S−𝑖 ,G) = MLP4 (e(𝐿1)𝑖
), (6)

whereMLP4 (·) is two-layerMLPwith ReLU activation in the hidden

layer and softmax activation in the output layer. The computational

complexity of EGNN scales quadraticallywith respect to the number

of nodes. Specifically, the complexity of computation of m𝑖 𝑗 and

x(𝑙+1)
𝑖

are both quadratic w.r.t. number of nodes (the first two lines

in Eq. 5).

In summary, EGNN can leverage local geometric structure; how-

ever, due to its limited scalability, it cannot consider the global struc-

ture, i.e., all the amino acids in the protein. On the other hand, pro-

tein usually contains hundreds or thousands of amino acids where

long-term dependency between amino acids is important [37]. To

model this dependency, we use BERT below.

3.2.2 BERT model for amino acid sequence. Bidirectional Encoder
Representations from Transformers (BERT) is a transformer-based

pretraining technique for natural language processing (NLP) [8].

We utilize BERT to learn another MCMC proposal distribution,

denoted BERT(s𝑡 |S−𝑡 ,G). Different from EGNN that leverages local

geometric structure, BERT is able to model long range dependency

in the amino acid and secondary structure sequence. Specifically,

v(𝑙+1)
1

, · · · , v(𝑙+1)
𝑁

= Transformer

(
v(𝑙)
1
, · · · , v(𝑙)

𝑁

)
,

𝑙 = 0, · · · , 𝐿2, v(0)
𝑖

=
[
𝐻1 (s𝑖) ⊕ 𝐻2 (z𝑖) ⊕ 𝐻3 (𝑖)

]
,

(7)

where ⊕ denotes the concatenation of vectors; 𝐻1 (s𝑖) is the amino

acid level embedding to represent s𝑖 ; 𝐻2 (z𝑖) is the secondary struc-

ture level embedding to represent z𝑖 , worth to mention that given

the tertiary structure (3D graph G), the secondary structure Z is

available; 𝐻3 (𝑖) is the position embedding to represent the position

𝑖 and capture the sequential nature of positions in vector space (i.e.,

1, 2, 3, · · ·) [6, 8]. These embeddings are concatenated to construct

the basic (0-th layer) embeddings. Multiple transformer layers (with

multi-head self-attention) are stacked to capture the long-range

dependency. The proposal distribution of 𝑖-th node is produced

by adding a two-layer MLP (softmax in output layer and ReLU in

hidden layer) to the last layer’s (𝐿2-th) node embedding v(𝐿2)
𝑖

,

BERT(s𝑖 |S−𝑖 ,G) = MLP(v(𝐿2)
𝑖

) . (8)

3.2.3 Mixture of two proposal distribution. EGNN and BERT focus

on local geometric structure and long-range dependency, respec-

tively. To combine two proposal distribution (Eq. (6) and (8)), we

SIPF: Sampling Method for Inverse Protein Folding KDD ’22, August 14–18, 2022, Washington, DC, USA

use a linear interpolation to get a better proposal distribution,

𝑄𝜃 (s𝑖 |S−𝑖 ,G) = 𝛾 EGNN(s𝑖 |S−𝑖 ,G) + (1 − 𝛾) BERT(s𝑖 |S−𝑖 ,G),
(9)

where 0 < 𝛾 < 1 is a hyperparameter that controls the weights of

two proposal distributions.

3.3 Adaptive Sampling
This section designs an adaptive sampling scheme that selects

s1, · · · , s𝑁 (amino acids) with adaptive weights. As mentioned

in Sec 2.1, one advantage of MCMC sampling methods over the

autoregressive generative models [20, 32, 37] is that MCMC meth-

ods (especially Gibbs sampling) can sample variables (amino acids

here) in a random order [14, 16], whereas, auto-regressive models

produce variables sequentially in a fixed order.

Moreover, most proteins exhibit large variability in only a small

fraction of the amino acids [9]. For example, in Y-shaped antibod-

ies, complementarity-determining regions are part of the highly

diverse chains, which only consist of a small fraction of the whole

antibodies’ amino acid sequence. In contrast, the remaining regions

have significantly smaller variability [9]. We hope to assign more

sample weight to the positions with high variability to explore the

protein space efficiently and thoroughly. In particular, we expect

the sampling methods to draw less “correlated” (more independent)

samples. The independence between consecutive MCMC samples

is usually measured by Effective Sample Size (ESS) [10, 25, 31]. The

ESS is the number of effective independent samples from the target

distribution to which the Markov chain is equivalent. ESS is defined

as

ESS = 𝑇 /
(
1 + 2

∑︁∞
𝑘=1

𝜌𝑘
)
, (10)

where 𝑇 is the number of samples, 𝜌𝑘 is the auto-correlation of

the sampler with lag 𝑘 and measure correlation between 𝑖-th and

(𝑖 + 𝑘)-th samples (𝑖 = 1, 2, · · ·).
(
1 + 2

∑∞
𝑘=1

𝜌𝑘
)−1

is also known as

the asymptotic efficiency of an MCMC sampler [25]. To explore the

amino acid sequence space thoroughly, our goal is to maximize ESS

given a fixed computational budget (i.e., 𝑇), which is equivalent to

minimizing

∑∞
𝑘=1

𝜌𝑘 .

However, the higher-order autocorrelation coefficient (𝜌𝑘) is

difficult to estimate. Following [31], we minimize 𝜌1 instead. Mini-

mizing 𝜌1 is equivalent to maximize the expected distance between

consecutive samples (EDCS), i.e., S(𝑡) (t-th sample) and S(𝑡+1) ((t+1)-
th sample), defined as (E denotes expectation)

argmax

q=[𝑞1,· · · ,𝑞𝑁]
EDCS(q) = Eq

[
Distance(S(𝑡+1) , S(𝑡))

]
,

(11)

where 𝑞𝑖 is the sampling probability for the 𝑖-th amino acid s𝑖 and
we have

∑𝑁
𝑖=1 𝑞𝑖 = 1, S(𝑡) represents sampled amino acid sequence

at the 𝑡-th iteration and 𝑡 < 𝑇 , 𝑇 is the total number of samples.

In this paper, during sampling process, two amino acid sequences

(S1, S2) are based on the same 3D graph structure G (with 𝑁 nodes),

the distance between S1 and S2 is defined as the total number of

non-equal amino acids at all the corresponding positions,

Distance(S1, S2) =
∑︁𝑁

𝑖=1
1
(
(S1)𝑖 ≠ (S2)𝑖

)
. (12)

where (S1)𝑖 and (S2)𝑖 are the 𝑖-th amino acids in sequence S1 and
S2, respectively, the indicator function 1(·) is equal to 0 when two

amino acids are same and 1 otherwise. It is intractable to decom-

pose EDCS in Eq. (11) due to the interaction between variables.

To circumvent this issue, we make mean-field approximation as

follows.

Assumption 1 (Mean-field approximation). The variables (s1, · · · ,
s𝑁) in the target distribution 𝑃 (S|G) (Eq. 2) are independent from
each other. That is, 𝑃 (S|G) = ∏𝑁

𝑖=1 𝑃 (s𝑖 |G). It is commonly used

in the sampling problem, especially variational inference [25].

Under the mean-field approximation, s1, · · · , s𝑁 in the target

distribution 𝑃 (S|G) (Eq. 2) are independent from each other. EDCS

(Eq. 11) can be decomposed as

EDCS(q) =
∑︁𝑁

𝑖=1
𝑞𝑖𝐷 (𝑖),

𝐷 (𝑖) =
|𝑉 |∑︁
𝑗=1

𝑝𝑖𝑗︸︷︷︸
start at 𝑗

·
(
𝑝𝑖𝑗 · 0︸︷︷︸
𝑗−→𝑗

+ (1 − 𝑝𝑖𝑗) · 1︸ ︷︷ ︸
𝑗−→not 𝑗

)
= 1 −

|𝑉 |∑︁
𝑗=1

(𝑝𝑖𝑗)
2,

(13)

where 𝑝𝑖
𝑗
= 𝑃 (s𝑖 = 𝑗 |G) is the MCMC proposal distribution under

mean-field approximation, and

∑ |𝑉 |
𝑗=1

𝑝𝑖
𝑗
= 1. 𝑉 is set of all amino

acids and |𝑉 | = 20. (1) “start at 𝑗”: 𝑝𝑖
𝑗
is the probability that the

current s𝑖 ’s state is 𝑗 . Due to the mean-field approximation, it is only

related to the marginal distribution of s𝑖 , 𝑃 (s𝑖 = 𝑗 |G). (2) “ 𝑗 −→ 𝑗”:

with probability 𝑝𝑖
𝑗
, s𝑖 remains the same after sampling, which is

not related to the starting point. In this case, the distance between

two sequences before and after sampling is 0. (3) “ 𝑗 −→ not 𝑗”: with

probability 1 − 𝑝𝑖
𝑗
, the amino acid at s𝑖 changes after sampling.

In this case, the distance between two sequences before and after

sampling is 1 based on distance function in Eq. (12). 𝐷 (𝑖) measures

the expectation of distance between consecutive sequences when

sampling the 𝑖-th amino acid under the mean-field assumption.𝐷 (𝑖)
can be estimated empirically during the sampling process. Now our

objective becomes

argmax

q=[𝑞1,· · · ,𝑞𝑁]

∑︁𝑁

𝑖=1
𝑞𝑖𝐷 (𝑖) + 𝜆 1

𝑁
ln𝑞𝑖 , s.t.

∑︁𝑁

𝑖=1
𝑞𝑖 = 1,

(14)

where 𝜆 > 0 is a hyperparameter. The first term aims to maximize

the expected distance between consecutive samples (EDCS); while

the second term is the negative cross-entropy loss between the

uniform distribution [1/𝑁, · · · , 1/𝑁] and adaptive weight’s distri-

bution [𝑞1, · · · , 𝑞𝑁], which serves as a regularizer that encourages

the adaptive weight’s distribution to be close to uniform distribu-

tion and encourages the coverage of all the variables during the

sampling process. Only optimizing the first term would result in

only sampling the variable with maximal 𝐷 (𝑖) (𝑞𝑖 = 1). On the

other hand, only optimizing the second term would lead to a uni-

formly random sampling with respect to all the variables. Eq. (14) is

a constrained concave optimization problem. The constraints are a

convex hull. We leverage the online augmented Lagrangian method

to solve it in online manner [23].

Intuition. We observe that when the amino acids’ distribution is

more uniform, based on Eq. 14, larger 𝐷 (𝑖) leads to larger 𝑞𝑖 , i.e.,

larger sampling probability at 𝑖-th variable. This is consistent with

our intuition: to explore the data space more thoroughly, we assign

more weight to the amino acids that own significant uncertainty.

KDD ’22, August 14–18, 2022, Washington, DC, USA Tianfan Fu and Jimeng Sun

Then we show the effectiveness of the adaptive sampling scheme,

i.e., the stationary distribution of the generated samples converges

to the target distribution. The proof is in Appendix.

Theorem 1. The stationary distribution of the samples produced

by adaptive sampling (using adaptive weight q = [𝑞1, · · · , 𝑞𝑁] to
select s𝑖 to sample) is the expected target distribution 𝑃 (S|G) (Eq. 4).

3.4 Approximate Target Distribution
This section designs an approximate target distribution 𝑃 (S) as sur-
rogate of the unavailable target distribution 𝑃 (S|G). Specifically, as
mentioned in Eq. (4), the target distribution 𝑃 (S|G) is not available.
To address this issue, we resort to approximate target distribution,

𝑃 (S) ≈ 𝑃 (S|G). (15)

It is a function of the perplexity score of the amino acid sequence.

Perplexity is commonly used in natural language processing for

evaluating contextual representations [11] and is the exponential

of the average log-likelihood and measures how well a probability

model predicts a sequence of amino acids [4, 20], defined as

Perplexity(S) = exp

(
− (1/𝑁)

∑︁𝑁

𝑖=1
logO(s𝑖 |S<𝑖)

)
. (16)

O(·|S<𝑖) is a categorical distribution over all the amino acids con-

ditioned on S<𝑖 , O(s𝑖 |S<𝑖) measures the probability of s𝑖 , ranging
from 0 to 1. It is usually a well trained sequence labelling model,

e.g., LSTM [11]. Lower perplexities indicate better performance.

Existing studies empirically showed that perplexity score is neg-

atively correlated to the recovery rate (Eq. 3) in the inverse protein

folding [20, 21], which is also empirically validated in Sec 4.4. For-

mally, we assume

R(S, S
truth

) = 𝜉1 − 𝜉2Perplexity(S) + 𝜖. (17)

where 𝜉1, 𝜉2 > 0 are coefficients and are empirically estimated on

the validation set; 𝜖 is the bias and can be seen as zero-mean white

noise. As mentioned in Eq. (4), the target distribution is defined

as a function of recovery rate, i.e., 𝑃 (S|G) ∝ exp(𝛿R(S, S
truth

)) .
Combining Eq. (17) and (4), we get a biased estimator of the target

distribution 𝑃 (S|G) (Eq. 4) based on the perplexity score,

𝑃 (S) ∝ exp

(
𝛿 (𝜉1 − 𝜉2Perplexity(S) + 𝜖)

)
≈ exp

(
𝛿 (𝜉1 − 𝜉2Perplexity(S))

)
∝ exp

(
− 𝜂Perplexity(S)

)
,

(18)

where 𝛿 > 0 is the scaling hyperparameter defined in Eq. (4). We

only need to tune the hyperparameter 𝜂 = 𝛿𝜉2 on validation set.

3.5 SIPF Pipeline
This section summarizes the SIPF pipeline, especially how to in-

corporate Sec 3.2-3.4 into the sampling pipeline. As mentioned in

Sec 3.1, SIPF is a novel Metropolis-Hastings within Gibbs sampling

method ((iii) in Sec 2.1). Each single sampling iteration conducts

Metropolis-Hastings step ((i) in Sec 2.1) on one amino acid. Specifi-

cally, before conducting the 𝑡-th step, we have amino acid sequence

at (𝑡-1)-th step,

S(𝑡−1) = (s(𝑡−1)
1

, · · · , s(𝑡−1)
𝑁

) . (19)

Then based on adaptive weight q (Sec 3.3), we select to sample

the 𝑗 (𝑡) -th amino acid at the 𝑡-th step. Then we sample s(𝑡)
𝑗 (𝑡)

from

the MCMC proposal distribution 𝑄𝜃 (·|S
(𝑡−1)
−𝑗 (𝑡) ,G) (Sec 3.2). In the

proposal S′, we update s(𝑡)
𝑗 (𝑡)

while other amino acids remain the

same, i.e.,

S′ = (s(𝑡−1)
1

, · · · , s(𝑡−1)
𝑗 (𝑡)−1, s

(𝑡)
𝑗 (𝑡)
, s(𝑡−1)

𝑗 (𝑡)+1, · · · , s
(𝑡−1)
𝑁

),

where s(𝑡)
𝑗 (𝑡)

∼ 𝑄𝜃 (· | S
(𝑡−1)
−𝑗 (𝑡) ,G).

(20)

Different from the standard Metropolis-Hasting algorithm (Eq. 1,

Sec 2.1), the acceptance rate uses approximate target probability

𝑃 (·) (Sec 3.4) instead of target probability,

A(S(𝑡−1) −→ S′) = min

{
1,

𝑃 (S′)𝑄𝜃

(
s(𝑡−1)
𝑗 (𝑡)

|S(𝑡)−𝑗 (𝑡) ,G
)

𝑃 (S)𝑄𝜃

(
s(𝑡)
𝑗 (𝑡)

|S(𝑡−1)−𝑗 (𝑡) ,G
) }

, (21)

where in denominator and numerator in RHS, the proposal distribu-

tion are from the same distribution (i.e., 𝑄𝜃

(
· |S(𝑡−1)−𝑗 (𝑡) ,G

)
), because

the 𝑗 (𝑡) -th node is masked when generating proposal distribution

(Sec 3.2), and S(𝑡−1)−𝑗 (𝑡) = S(𝑡)−𝑗 (𝑡) (Eq. 19, 20). When the proposal is ac-

cepted, we set S(𝑡) = S′; otherwise, we use the sequence at (𝑡-1)-th
step, i.e., S(𝑡) = S(𝑡−1) .

Algorithm 1 SIPF

1: Input: train data {G, S,Z}; test data (graph) {G,Z}.
2: Output: test data (amino acid sequence) {S}.
3: Pretrain EGNN (Sec 3.2.1) and BERT (Sec 3.2.2) on train data

4: Random initialize S(0) on test data.

5: for 𝑡 = 1, · · · ,𝑇 do
6: Select 𝑗 (𝑡) based on adaptive weight q = [q1, · · · , q𝑁].
7: Sample s𝑗 (𝑡) from MCMC proposal distribution and generate

the proposal S′ (Eq. 20); update 𝐷 (𝑗 (𝑡)) (Eq. 13)
8: Estimate q = [𝑞1, · · · , 𝑞𝑁] (Eq. 14) if (t=0 mod K).

9: Evaluate the acceptance rate A(S(𝑡−1) −→ S′) (Eq. 21)
10: Accept proposal with probability A(S(𝑡−1)), i.e., S(𝑡) = S′;

otherwise, reject proposal, i.e., S(𝑡) = S(𝑡−1) .
11: end for

Explanation of Algorithm 1. We summarize key steps in Algo-

rithm 1. First, we pretrain EGNN and BERT as conditional probabil-

ity based MCMC proposal distribution using the training data (Step

3-4). Then during inference phase, within each sampling iteration,

we conduct several steps: (i) Select a variable to sample and sam-

ple from MCMC proposal distribution, generate proposal S′ (Step
7-8). (ii) update adaptive weight q = [𝑞1, · · · , 𝑞𝑁] (Eq. 14) every 𝐾
iterations (Step 8). (iii) accept/reject proposal S′ using approximate

target distribution and Metropolis-Hastings method (Step 9-10).

3.6 Theoretical Analysis
Now we explore the theoretical properties of the proposed method.

We have two main theoretical results: (1) Lemma 1 and Theorem 2

shows the samples generated by ourmethod follow the approximate

target distribution 𝑃 (S) (Eq.18); (2) we show the approximate target

distribution 𝑃 (S) is close to the target distribution 𝑃 (S|G) (Eq.4)
under certain assumptions. Proof are in Appendix.

SIPF: Sampling Method for Inverse Protein Folding KDD ’22, August 14–18, 2022, Washington, DC, USA

Lemma 1. In Algorithm 1, the Markov chain of the sampled amino

acid sequences (S(1) , S(2) , · · ·) is ergodic over the approximate

target distribution 𝑃 (S).

Theorem 2. 𝑃 (S) (Eq. 18) is maintained as the invariant distribu-

tion for the whole Markov chain produced by Algorithm 1.

Remarks. Lemma 1 and Theorem 2 guarantee SIPF’s samples

follow the approximate target distribution 𝑃 (S).
The second part of theoretical analysis is to show the approx-

imate target distribution 𝑃 (S) is close to the target distribution

𝑃 (S|G) (Eq. 4). Specifically, KL divergence is widely used to mea-

sure the difference between two probability distributions, e.g., in

variational inference [25]. Thus, we attempt to prove that the KL

divergence between the target probability 𝑃 (S|G) and the approx-

imate probability 𝑃 (S) can be bounded. Before that, we formally

define the KL divergence and make some assumptions.

Definition 4 (KL divergence). If we have two separate probability

distributions 𝑝 (𝑥) and 𝑞(𝑥) over the same random variable 𝑥 , we

can measure how different these two distributions are using the

Kullback-Leibler (KL) divergence: KL(𝑝 (𝑥)∥𝑞(𝑥)) = E𝑥∼𝑝
[
ln

𝑝 (𝑥)
𝑞 (𝑥)

]
=
∫
𝑝 (𝑥) ln 𝑝 (𝑥)

𝑞 (𝑥) 𝑑𝑥 . The KL divergence of any two probability dis-

tributions 𝑝 (𝑥) and 𝑞(𝑥) is greater or equal to 0. The equality is

obtained if and only if 𝑝 = 𝑞 almost everywhere. Lower KL diver-

gence indicates these two distributions are closer.

Assumption 2. The negative correlation between the recovery

rate and perplexity score is well estimated: given 𝜉1, 𝜉2, 𝜖 in Eq.(17),

we have |𝜉1 − 𝜉 truth
1

| < 𝜏1, |𝜉2 − 𝜉 truth
2

| < 𝜏2, the white noise 𝜖

satisfies |𝜖 | < 𝜏3, 𝜉 truth
1

, 𝜉 truth
2

are real underlying coefficients.

Assumption 3. Perplexity of the generated amino acid sequences

is bounded by 𝜌 . It is validated by experiment in Section 4.4

Theorem3. Under Assumption 2 and 3, the KL divergence between

the target distribution and the approximate target distribution can

be bounded as KL(𝑃 (S|G)∥𝑃 (S)) ≤ 𝛿 (𝜏1 + 𝜏2𝜌 + 𝜏3), where 𝛿 is

scaling parameter in Eq.(4); 𝜏1, 𝜏2, 𝜏3 are defined in Assumption 2,

𝜌 is defined in Assumption 3.

Remarks. The theorem shows the approximate target distribution

is close to the target distribution in terms of KL divergence.

4 EXPERIMENT
4.1 Dataset and Preprocessing
RCSB. We download all the protein data in pdb format from https:

//www.rcsb.org/. The Protein Data Bank (PDB) file format is a

textual file format describing the three-dimensional structures of

molecules held in the Protein Data Bank. The PDB format accord-

ingly provides description and annotation of protein and nucleic

acid structures, including atomic coordinates, secondary structure

assignments, and atomic connectivity. The list of all the amino acids,

secondary structure, and their frequencies are provided in Appen-

dix. We collect 27,043 proteins with a single chain, from which we

randomly select 1,000 proteins as a test set. The remaining proteins

are used for learning. We split training and validation sets with a

9:1 ratio. The training and validation set contains 24,338 and 2,705

proteins, respectively.

CATH [30] is a dataset based on the hierarchical classification of

protein structure (CATH) available at https://www.cathdb.info/,

also in PDB format. Following [7, 19, 20], for all domains in the

CATH 4.2 40% non-redundant set of proteins, we collect full chains

up to length 500 and then randomly assign their CATH topology

classifications (CAT codes) to train, validation and test sets at a

targeted 8/1/1 split. Since each chain can contain multiple CAT

codes, we first removed any redundant entries from train and then

from validation. Finally, we removed any chains from the test set

that had CAT overlap with train and removed chains from the

validation set with CAT overlap to train or test. This resulted in

a dataset of 15,802 chains in the training set, 1,975 chains in the

validation set, and 1,887 chains in the test set.

4.2 Baseline
For all baselines, we use the default setup (hyperparameter) in the

original papers. (i) StructTrans (Structured Transformer) [20]
uses three layers of self-attention and position-wise feedforward

modules for the encoder and decoder; (ii) ProDCoNN (Protein
design convolutional neural network) [42] uses a gridded box

centered on the target residue to capture the local structural in-

formation. The atoms and their features are later voxelized into

the 3D voxel grid. A 3D convolutional layer followed by a max-

pooling layer is then attached, followed by a MLP layer to make

a prediction; (iii) DeepGCN (Deep Graph Convolutional Net-
work) [37] used graph convolutional network to represent the node
and edge attributes, where the 3D graph is transformed into a 2D

graph with an adjacency matrix. (iv) Fold2Seq (Protein Folding
to Sequence) [7] jointly learns a sequence embedding using a

transformer and a fold embedding from the density of secondary

structural elements in 3D voxels. Traditional physics based method

RosettaDesign [22] performs much worse than state-of-the-art deep

learning methods and is inefficient [7, 20, 42, 44]. Thus, it is not

included in the baselines. For reference, we also show the results

of (i) Uniform (Uniform frequencies): random amino acid se-

quence under the uniform distribution of all the amino acids and

(ii) Natural (Natural frequencies): random amino acid sequence

through natural frequencies of amino acids. We calculate the natu-

ral frequencies of all the amino acids on the processed protein data

and report them in Appendix.

4.3 Evaluation Metrics
We use evaluation metrics following [20, 32, 37, 42]. (1) Recovery
rate (RR) (%): percentage of correctly recovered amino acids in the

whole sequence; (2) Perplexity (PPL) has been defined in Eq.(16)

and measures how well a probability model can predict a protein.

Lower perplexities indicate better performance. (3) Amino acid
level accuracy (AAA). For each amino acid, the prediction can be

seen as a binary classification task (correctly recovered or not), we

report average Precision-Recall Area Under the Curve (PR-AUC)

over all the amino acids to measure amino acid level accuracy.

4.4 Results and Analysis
In this section, we report the experimental results and analyze the

results. The performance of all the compared methods on RCSB

and CATH are presented in Table 2. We observe that our method

https://www.rcsb.org/
https://www.rcsb.org/
https://www.cathdb.info/

KDD ’22, August 14–18, 2022, Washington, DC, USA Tianfan Fu and Jimeng Sun

Table 2: Experimental results onRCSB andCATH. The results
are averages and standard deviations of 5 independent runs.
On each metric, we highlight the best score and use * to
denote the results pass the t-test (SIPF versus Fold2Seq, the
best baseline) with p-value < 0.05. The t-test results show
that improvements of SIPF over the best baseline method
are significant in most of the metrics on both tasks.

RCSB

Method RR (↑) PPL (↓) AAA (↑)
Uniform 5.52±0.13% 20.02±0.06 0.15±0.01
Natural 9.18±0.08% 17.44±0.07 0.21±0.01

StructTrans 29.81±0.15% 9.30±0.11 0.40±0.02
ProDCoNN 25.78±0.25% 9.92±0.21 0.35±0.02
DeepGCN 28.00±0.24% 9.67±0.11 0.38±0.01
Fold2Seq 30.20±0.24% 9.28±0.10 0.43±0.01
SIPF 32.43±0.23%* 8.69±0.13* 0.46±0.01*

CATH

Method RR (↑) PPL (↓) AAA (↑)
Uniform 5.13±0.04% 20.03±0.05 0.15±0.01
Natural 9.84±0.05% 17.50±0.04 0.20±0.01

StructTrans 28.56±0.08% 9.47±0.06 0.38±0.01
ProDCoNN 26.52±0.11% 9.85±0.10 0.36±0.01
DeepGCN 27.78±0.12% 9.71±0.11 0.38±0.01
Fold2Seq 30.02±0.11% 9.38±0.05 0.43±0.01
SIPF 31.45±0.13%* 8.72±0.10* 0.45±0.01

Figure 2: The correlation between perplexity and amino acid
level recovery rate. Perplexity and recovery rate are nega-
tively correlated.

achieves the highest recovery rate (RR), amino acid-level accuracy

(AAA), and lowest (best) perplexity among all the compared meth-

ods on both datasets. Specifically, compared with the best baseline

method Fold2Seq, our method achieves 7.4% relative improvement

on recovery rate (RR) (30.20% v.s. 32.43%) and 6.4% relative reduction

in perplexity (8.69 v.s. 9.28) on RCSB, 4.5% relative improvement on

recovery rate (RR) (30.02% v.s. 31.45%) and 7.0% relative reduction

in perplexity (8.72 v.s. 9.38) on CATH. The results of hypothesis test-

ing (t-test) shows the improvements over the best baseline method

are significant in most of the metrics.

We also plot the scatter points of perplexity and amino acid level

recovery rate on a subset of the test set of RCSB in Fig. 2 to reveal

their correlation. Their Pearson (product-moment) correlation co-

efficient is -0.3064, indicating that perplexity and recovery rate are

negatively correlated. This observation is consistent with the exist-

ing studies [20, 21] and validates the rationality of incorporating

perplexity into the approximate distribution 𝑃 (S) (in Eq.18).

Figure 3: Case study: visualizing (normalized) adaptive
weight (q, Eq. 14). Left: 3D structure of the heavy chain of
the protein whose PDB id is 4BKL, where H1, H2, H3 usually
have high variability compared with other positions. Right:
3D structure of the heavy chain with normalized sampling
weight q at each node (amino acid). Lighter nodes have a
higher weight. We find amino acids on H1, H2, H3 have more
weights than others, consistent with the existing knowledge
that these regions have higher variability [38, 43].

4.5 Case Study
As described in Sec 3.3, our method estimates a sampling weight

𝑞𝑖 for the 𝑖-th amino acid. The amino acid with more uncertainty

will have a higher sampling weight. To get more insight into the

proposed method, we visualize normalized q weight on a data sam-

ple as a case study in Figure 3. Specifically, we select an antibody

whose pdb id is 4BKL as the example. Detailed description of 4BKL

is available at https://www.rcsb.org/structure/4bkl. Antibody is a

special kind of protein, which has a symmetric Y shape, each half

of the symmetric unit has two chains: a heavy chain (H) and a

light (L) chain [38, 43]. There are 6 open loops, L1, L2, L3 on the

light chain and H1, H2, H3 on the heavy chain, named comple-

mentarity determining regions, which define most of their antigen

binding functionality. Thus, these 6 loops usually have higher vari-

ability [38, 43]. In this section, for ease of visualization, we show

the 3D structure of the heavy chain of 4BKL in Figure 3, including

the positions of H1, H2, H3 loops (left) and the estimated sampling

weight q (right), where lighter nodes in the right sub-figure mean

higher weight. The sampling weights are normalized to range from

0 to 1. We plot the 3D structure of the heavy chain with normalized

(range from 0-1) sampling weight q at each node (amino acid). We

observe that the nodes (i.e., amino acid) on H1, H2, H3 have more

weights than other nodes, which is consistent with the fact that

these regions have higher variability [38].

Table 3: Ablation studies (Sec 4.6).

Method RR (↑) PPL (↓) AAA (↑)
EGNN only 32.17±0.23% 8.71±0.13 0.45±0.01
BERT only 29.80±0.27% 9.47±0.11 0.40±0.01

Gibbs sampling 28.81±0.14% 9.62±0.12 0.39±0.02
uniform sampling 31.50±0.15% 9.28±0.12 0.42±0.02

w.o. reject 31.75±0.21% 9.20±0.16 0.43±0.02
SIPF 32.43±0.23% 8.69±0.13 0.46±0.01

4.6 Ablation Study
To further understand our method, we conduct an ablation study

on the RCSB dataset to investigate the impact of each component

https://www.rcsb.org/structure/4bkl

SIPF: Sampling Method for Inverse Protein Folding KDD ’22, August 14–18, 2022, Washington, DC, USA

on the performance. Specifically, we explore the empirical effect for

both conditional probability based proposal and sampling method

and consider the following variants of our method. (1) EGNN only.
Our MCMC proposal distribution is a mixture of EGNN and BERT

prediction, as described in Eq.(9). The variant uses only EGNN

prediction as a proposal to consider the local geometric structural

information only, i.e., 𝛾 = 1 (Eq.9 in Sec 3.2). (2) BERT only. The
variant uses only BERT prediction as MCMC proposal distribution

to consider the long-range dependency only, i.e., 𝛾 = 0 (Eq.9 in

Sec 3.2). (3) Gibbs sampling. Gibbs sampling scans all the vari-

ables in a fixed order [13], instead of adaptive sampling in our

method (Sec 3.3). (4) uniform sampling. The variant randomly

and uniformly selects all the variables instead of adaptive weight

(Sec 3.3). (5) w.o. reject. The variant does not reject the proposal
but accepts all the proposals. It studies the effect of leveraging ap-

proximate target distribution (Sec 3.4). To make the comparison

fair, the total numbers of sampling iterations for all the methods

are the same, ten times of the amino acid sequence length. Table 3

reports the results of the ablation study, which demonstrates the

best performance of the full method SIPF. From the first two lines,

we find that both EGNN and BERT have positive contributions to

the performance. We observe that removing EGNN causes most

degradation in both recovery rate and perplexity, suggesting that

EGNN is more important than BERT. This is also validated by the

fact that 𝛾 = 0.7 achieves the best performance by putting more

weight on the EGNN component. Comparing 3rd, 4th and the last

line, we also observe that adaptive sampling in SIPF outperforms

Gibbs sampling and uniform sampling. In addition, comparing the

last two lines, we find if we accept the proposal, the performance

will degrade, demonstrating the positive contribution of approx-

imate target distribution 𝑃 (S) (Sec 3.4). In sum, MCMC proposal,

adaptive sampling, and approximate target distribution are all key

components of SIPF.

5 CONCLUSION
In this paper, to address the challenges in the existing inverse pro-

tein folding methods, we have proposed a sampling based method

for inverse protein folding. Concretely, we first formulate it as a

sampling problem and then design two pretrained neural networks

as (conditional probability) MCMC proposal distribution. We also

design a novel sampling method (an adaptive sampling scheme

and approximate target distribution) to quantify uncertainty and

enhance exploration ability to data space. Theoretical results show

the SIPF’s samples approximately follows the target distribution.

Thorough empirical studies confirm SIPF’s superiority.

ACKNOWLEDGEMENTS
This work was supported by IQVIA, NSF award SCH-2014438, IIS-

1838042, NIH award R01 1R01NS107291-01 and OSF Healthcare. We

thank Cao Xiao, Wenhao Gao and Xinyu Gu for discussions.

REFERENCES
[1] Rahmad Akbar et al. 2021. In silico proof of principle of machine learning-based

antibody design at unconstrained scale. BioRXiV (2021).

[2] Ethan C Alley et al. 2019. Unified rational protein engineering with sequence-

based deep representation learning. Nature methods (2019).
[3] Christophe Andrieu and Gareth O Roberts. 2009. The pseudo-marginal approach

for efficient Monte Carlo computations. The Annals of Statistics (2009).

[4] Jose Juan Almagro Armenteros et al. 2020. Language modelling for biological

sequences–curated datasets and baselines. BioRxiv (2020).

[5] Tristan Bepler and Bonnie Berger. 2019. Learning protein sequence embeddings

using information from structure. ICLR (2019).

[6] Nadav Brandes et al. 2021. ProteinBERT: A universal deep-learning model of

protein sequence and function. bioRxiv (2021).

[7] Yue Cao et al. 2021. Fold2Seq: A Joint Sequence (1D)-Fold (3D) Embedding-based

Generative Model for Protein Design. In ICML.
[8] Jacob Devlin et al. 2019. Bert: Pre-training of deep bidirectional transformers for

language understanding. NAACL (2019).

[9] Mathieu Dondelinger et al. 2018. Understanding the significance and implications

of antibody numbering and antigen-binding surface/residue definition. Frontiers
in immunology (2018).

[10] Tianfan Fu et al. 2020. MIMOSA: Multi-constraint Molecule Sampling for Mole-

cule Optimization. AAAI (2020).
[11] Pablo Gamallo et al. 2017. A perplexity-based method for similar languages

discrimination. In 4-th workshop on NLP for similar languages, varieties.
[12] W Gao et al. 2020. Deep learning in protein modeling and design. Patterns (2020).
[13] Alan Gelfand. 2000. Gibbs sampling. J. American statistical Association (2000).

[14] Stuart Geman and Donald Geman. 1984. Stochastic relaxation, Gibbs distributions,

and the Bayesian restoration of images. TPAMI (1984).
[15] Walter Gilks. 2005. Markov Chain Monte Carlo. Encyclopedia of biostat. (2005).
[16] Bryan D He et al. 2016. Scan Order in Gibbs Sampling: Models in Which it

Matters and Bounds on How Much. In NIPS.
[17] Weihua Hu et al. 2019. Strategies for pre-training graph neural networks. ICLR

(2019).

[18] Kexin Huang et al. 2020. DeepPurpose: a deep learning library for drug–target

interaction prediction. Bioinformatics (2020).
[19] Kexin Huang et al. 2021. Therapeutics data Commons: machine learning datasets

and tasks for therapeutics. NeurIPS Track Datasets and Benchmarks (2021).
[20] John Ingraham et al. 2019. Generative Models for Graph-Based Protein Design.

NeurIPS (2019).
[21] Wengong Jin et al. 2022. Iterative refinement graph neural network for antibody

sequence-structure co-design. ICLR (2022).

[22] Andrew Leaver-Fay et al. 2011. ROSETTA3: an object-oriented software suite

for the simulation and design of macromolecules. In Methods in enzymology.
[23] Chengbo Li et al. 2013. An efficient augmented Lagrangian method with applica-

tions to total variation minimization. Computational Optimization (2013).

[24] Ge Liu et al. 2020. Antibody complementarity determining region design using

high-capacity machine learning. Bioinformatics (2020).
[25] Jun S Liu et al. 2001. Monte Carlo strategies in scientific computing. Springer.
[26] Amy X Lu et al. 2020. Self-supervised contrastive learning of protein representa-

tions by mutual information maximization. BioRxiv (2020).

[27] Shitong Luo et al. 2021. A 3D Generative Model for Structure-Based Drug Design.

NeurIPS (2021).
[28] H Narayanan et al. 2021. Machine learning for biologics: opportunities for protein

engineering, developability, and formulation. Trends in pharmaco. sci. (2021).
[29] James O’Connell et al. 2018. SPIN2: Predicting sequence profiles from protein

structures using deep neural networks. Proteins: Structure, Function, and Bioin-
formatics (2018).

[30] Christine A Orengo et al. 1997. CATH–a hierarchic classification of protein

domain structures. Structure (1997).
[31] Cristian Pasarica and Andrew Gelman. 2010. Adaptively scaling the Metropolis

algorithm using expected squared jumped distance. Statistica Sinica (2010).
[32] Yifei Qi et al. 2020. DenseCPD: improving the accuracy of neural-network-based

computational protein sequence design with DenseNet. JCIM (2020).

[33] Prajit Ramachandran et al. 2017. Searching for activation functions. arXiv (2017).
[34] Donatas Repecka et al. 2021. Expanding functional protein sequence spaces using

generative adversarial networks. Nature Machine Intelligence (2021).
[35] Victor Garcia Satorras et al. 2021. E(n) equivariant graph neural networks. ICML

(2021).

[36] Sam Sinai et al. 2017. Variational auto-encoding of protein sequences. arXiv
(2017).

[37] Alexey Strokach et al. 2020. Fast and flexible protein design using deep graph

neural networks. Cell Systems (2020).
[38] Kathryn E Tiller et al. 2015. Advances in antibody design. Annual review of

biomedical engineering (2015).

[39] Jérôme Tubiana et al. 2019. Learning protein constitutive motifs from sequence

data. Elife (2019).
[40] Max Welling et al. 2011. Bayesian learning via stochastic gradient Langevin

dynamics. In ICML.
[41] Kaizhi Yue and Ken A Dill. 1992. Inverse protein folding problem: designing

polymer sequences. Proceedings of the National Academy of Sciences (1992).
[42] Yuan Zhang et al. 2020. ProDCoNN: Protein design using a convolutional neural

network. Proteins: Structure, Function, and Bioinformatics (2020).
[43] Jun Zhao et al. 2018. In silico methods in antibody design. Antibodies (2018).
[44] Yue Zhao et al. 2021. Pyhealth: A python library for health predict models. arXiv

(2021).

KDD ’22, August 14–18, 2022, Washington, DC, USA Tianfan Fu and Jimeng Sun

A IMPLEMENTATION DETAILS
This section elaborates on the implementation details for future

reproduction, including network architecture, hyperparameter set-

ting, software/hardware configuration, etc. We divide the imple-

mentation into three components as follows.

(i) Equivariant Graph neural network (EGNN) (Section 3.2.1).

For each amino acid in a sequence of training data, we mask it and

use the spatial k-nearest neighbor nodes (including the masked

node) as the input of EGNN, here 𝑘 = 25. That is, when predicting

the label of masked node, the nearest 25 nodes including itself are

used as the input to EGNN. The label to predict is the category of

the mask node. Following [35], the latent dimension is set to 100.

Number of layers is set to 𝐿 = 5. Following [35], 𝜙𝑥 (·), 𝜙𝑚 (·), 𝜙ℎ (·)
are all two-layer MLPs. To achieve non-linearity, the Swish activa-

tion function [33] is embedded in the hidden layer. For each amino

acid category, the mask node has an embedding vector, which is

also learnable. During the training procedure, the batch size is set

to 64, the dropout rate is set to 0.5, cross-entropy loss is used as loss

criteria. We use Adam as the optimizer with an initial learning rate

1𝑒−3. The training epoch is set to 10. The EGNN model after train-

ing 5 epoches got the highest prediction accuracy on the validation

set and is used during inference.

(ii) Protein BERT (Section 3.2.2). The implementation of Protein

BERT mostly follows BERT in the natural language processing com-

munity. First, it uses (1) amino acid level embedding
2
; (2) secondary

structure symbols’ embedding
3
; (3) positions’ embedding (position

is the index of the amino acid token in the whole sequence, i.e.,

embedding for 0,1,2,· · ·). The maximal length of the BERT model

is set to 512. The latent dimension for all the transformers are set

to 100. In each data sample, 5 amino acids are masked and pre-

dicted. Each amino acid sequence can generate 10 data samples

by randomly selecting various masked amino acids. Three-layer

transformers are stacked with multi-head self-attention mechanism.

Tanh is used as the activation function. An MLP is attached to the

representation of the last layer transformer to make the prediction.

Similar to the training of EGNN, Adam is used as the optimizer

with initial learning rate 1𝑒−3.
(iii) Sampling (Section 3.3 and 3.4). 0 < 𝛾 < 1 is an impor-

tant hyperparameter defined in Equation (9), which determined

the weight of two neural networks’ predictions. We select 𝛾 from

{0.1, 0.2, 0.3, · · · , 0.8, 0.9}, evaluate their performance on validation

set, and find 𝛾 = 0.7 achieves the highest recover rate and the

lowest perplexity. Thus we set 𝛾 to be 0.7. 𝜆 is another critical

hyperpameter when evaluating adaptive weight q = [𝑞1, · · · , 𝑞𝑁]
(Equation 14). In Algorithm 1, 𝐾 is set to 50. 𝜂 (Equation 18) is

tuned on validation set and set to 0.5. Then with respect to the

sampling iteration, first, in order to obtain an estimate of 𝐷 (𝑖), we
randomly scan over every the amino acid in the sequence twice.

Then we conduct adaptive sampling as described in Section 3.3 and

Algorithm 1. The sampling iteration is set to ten times of the amino

acid sequence length.

Software/hardware configuration. Our method is implemented

using Pytorch 1.7.0, Python 3.7, on an Intel Xeon E5-2690 machine

with 256G RAM and 8 NVIDIA Pascal Titan X GPUs.

2
20+1 categories, including masked token, as shown in Table 4

3
8 categories, as shown in Table 4

Table 4: Symbols for all the 20 natural amino acids, 8 sec-
ondary structures and their frequencies.

20 natural amino acids 8 secondary structures

class symbol % symbol description %

Glycine Gly / G 7.6% H Alpha helix 31.2%

Alanine Ala / A 7.7% B beta-bridge 1.3%

Valine Val / V 7.0% E Strand 24.1%

Leucine Leu / L 8.6% G 3-10 helix 3.4%

Isoleucine Ile / I 5.5% I Pi helix 0.02%

Proline Pro / P 4.6% T Turn 11.8%

Phenylalanine Phe / F 3.6% S Bend 9.4%

Tyrosine Tyr / Y 3.1% - None 18.9%

Tryptophan Trp / W 1.2%

Serine Ser / S 6.7%

Threonine Thr / T 5.7%

Cystine Cys / C 1.3%

Methionine Met / M 2.7%

Asparagine Asn / N 4.1%

Glutarnine Gln / Q 3.9%

Asparticacid Asp / D 5.3%

Glutamicacid Glu / E 6.5%

Lysine Lys / K 6.3%

Arginine Arg / R 5.3%

Histidine His / H 3.1%

Table 4 list all the amino acids (20 kinds), secondary structure (8

kinds) respectively and their frequencies. The frequencies are eval-

uated on all the processed protein data as described in Section 4.1.

B PROOF OF LEMMA 1
Proof. For a Markov chain, to guarantee its ergodicity, it is

sufficient to prove its irreducibility and aperiodicity [15, 25]. The

state here is the whole amino acid sequence. (I) Irreducibility: A
Markov chain in which every state can be reached from every other

state is called an irreducible Markov chain. If a Markov chain is

not irreducible but absorbable, the sequences of microscopic forms

may be trapped into some independent closed states and never

escape from such undesirable states [15]. (II) Aperiodicity: On the

other hand, a state S is aperiodic if the times of possible (positive

probability) return to S have a largest common denominator equal

to one [25].

(I) Irreducibility. First, we prove the irreducibility of the Markov

chain. Without loss of generalization, we need to prove that any

amino acid sequence pairs (𝑌 ,𝑍)4 can communicate with each other,

i.e., 𝑌 ↔ 𝑍 . Both Y and Z are two different states of the Markov

chain. We prove it via constructing two possible chains: one is from

𝑌 to 𝑍 and another is from 𝑍 to 𝑌 . Both have positive probabilities.

First, we want to show 𝑌 −→ 𝑍 , i.e., the state Y is accessible from

state Z. This boils down to prove there exists an positive integer

𝑛 ∈ N+ such that 𝑃𝑛
𝑌,𝑍

> 0, here 𝑛 is the step size. 𝑃𝑛
𝑌,𝑍

> 0 denotes

the probability that given the start state 𝑌 , the Markov chain takes

𝑛 steps to reach the state 𝑍 . To proceed it, we construct such a

Markov chain

{𝑌 (0) , 𝑌 (1) , · · · , 𝑌 (𝑛) }, (22)

where 𝑌 (0) = 𝑌 and 𝑌 (𝑛) = 𝑍 . Specifically, we let 𝑛 be the distance

between 𝑌 and 𝑍 . The distance between 𝑌 and 𝑍 is defined as the

total number of non-equal amino acids at all the corresponding

positions, defined as Distance(𝑌, 𝑍) = ∑𝑁
𝑖=1 1

(
(𝑌)𝑖 ≠ (𝑍)𝑖

)
, where

𝑌𝑖 and 𝑍𝑖 are the 𝑖-th amino acids in sequence 𝑌 and 𝑍 , respectively.

The lengths of 𝑌 and 𝑍 are both equal to 𝑁 . The indicator function

4𝑌 and 𝑍 are conditioned on the same 3D graph structure, thus they have the same

length. The length is denoted 𝑁 .

SIPF: Sampling Method for Inverse Protein Folding KDD ’22, August 14–18, 2022, Washington, DC, USA

1(·) is equal to 0 when two amino acids are same and 1 otherwise.

Also, we letW = {𝑖 | 𝑖 ∈ {1, 2, · · · , 𝑁 } and (𝑌)𝑖 ≠ (𝑍)𝑖 } to collect

all the indexes of amino acid where the sequence 𝑌 differs from

𝑍 . The cardinality of W is n, i.e., |W| = 𝑛. Then we generate a

list of all the elements inW: [𝑘1, · · · , 𝑘𝑛], where 𝑘1, · · · , 𝑘𝑛 ∈ W
are 𝑛 distinct indexes. For any 𝑖 = 1, · · · , 𝑛, we let 𝑌 (𝑖)

differs the

previous state 𝑌 (𝑖−1)
on the 𝑘𝑖 -th amino acid. The 𝑘𝑖 -th amino acid

in 𝑌 (𝑖)
is the same as the final state 𝑌 (𝑛) = 𝑍 while the remaining

amino acids are the same as the previous state 𝑌 (𝑖−1)
. Based on

acceptance rate defined in Eq. (21), we have 𝑃1
𝑌 (𝑖−1) ,𝑌 (𝑖) > 0 holds

for any 𝑖 = 1, · · · , 𝑛 (the proposal distribution is a categorical distri-

bution and output of a softmax layer, as mentioned in Section 3.2,

the probability of all the elements are greater than 0). Thus, we

have 𝑃𝑛
𝑌,𝑍

= 𝑃𝑛
𝑌 (0) ,𝑌 (𝑛) >

∏𝑛
𝑖=1 𝑃

1

𝑌 (𝑖−1) ,𝑌 (𝑖) > 0, where the first “>”

satisfies because we have only construct one possible Markov chain.

Each permutation of [𝑘1, · · · , 𝑘𝑛] corresponds to a unique Markov

chain. There are totally 𝑛possible chains that transforms 𝑌 (0) = 𝑌
to 𝑌 (𝑛) = 𝑍 in 𝑛 steps, each step changes an amino acid. Similarly,

we can show 𝑍 −→ 𝑌 , i.e., ∃ 𝑛 ∈ N for 𝑃𝑛
𝑍,𝑌

> 0. We can simply

reverse the Markov chain above (Equation 22) as the new Markov

chain. That is, the new Markov chain is {𝑌 (𝑛) , 𝑌 (𝑛−1) , · · · , 𝑌 (0) },
where 𝑌 (𝑛) = 𝑍 and 𝑌 (0) = 𝑌 . Now we have proved 𝑍 ↔ 𝑌 hold

for any amino acid sequence pairs (𝑌, 𝑍). That is, we have proved
the irreducibility of the Markov chain.

(II) Aperiodicity. Next, we prove the aperiodicity of the Markov

chain. there is a simple test: if there is a state 𝑌 for which the 1-step

transition probability 𝑝 (𝑌,𝑌) > 0, then the chain is aperiodic [15].

There is an amino acid sequence of which the acceptance probability

is lower than 1, i.e., possible to reject the proposal. The 1-step

transition probability is greater than 0, so aperiodicity holds. □

C PROOF OF THEOREM 1
Proof. We consider a Markov chain on state space Ω with tran-

sition matrix𝑀 and stationary distribution 𝜋 , following [16]. Let

𝑀𝑖 be the transition matrix corresponding to sampling variable 𝑥𝑖 .

Also, let 𝑞𝑖 (𝑖 ∈ {1, · · · , 𝑁 }) represent the sampling probability of

the 𝑖-th variable and that

∑𝑁
𝑖=1 𝑞𝑖 = 1. For ease of exposition, the

state space is augmented. The augmented state space is Ψ = Ω× [𝑛],
including both the current state and the index of the variable to be

sampled. The transition probability is 𝑃 ((𝑥, 𝑖), (𝑦, 𝑗)) = 𝑞 𝑗𝑀𝑖 (𝑥,𝑦).
It can be shown that applying the transition matrix for non-uniform

scan does not change the expected target distribution 𝜋 , which satis-

fies that 𝜋 ((𝑥, 𝑖)) = 𝑞𝑖𝜋 (𝑥). That is,
∑
𝑥,𝑖 𝜋 ((𝑥, 𝑖))𝑃 ((𝑥, 𝑖), (𝑦, 𝑗)) =

𝑞 𝑗 · 𝜋 (𝑦) = 𝜋 (𝑦, 𝑗) . Thus, the stationary distribution of adaptive

weight sampling is 𝜋 ((𝑥, 𝑖)) = 𝑞𝑖𝜋 (𝑥). Proved. □

D PROOF OF THEOREM 2
Proof. In general MCMC methods, the detailed balance condi-

tion is the sufficient condition to prove the invariant distribution

for the whole Markov chain. We suppose 𝑝 (·) is target probability
distribution, 𝑥 and 𝑦 are two states. Detailed balanced condition
is formally defined as 𝑝 (𝑥)T (𝑥 −→ 𝑦) = 𝑝 (𝑦)T (𝑦 −→ 𝑥), where 𝑝 (·)
is the target distribution for drawing samples. T (𝑥 −→ 𝑦) is the
transition kernel (a.k.a. transition probability) from the state 𝑥 to

the state 𝑦. Transition probability/kernel T (𝑥 −→ 𝑦) is defined

as the product of density of proposal distribution 𝑞(𝑦 |𝑥) and the

acceptance rate A(𝑥 −→ 𝑦), i.e., T (𝑥 −→ 𝑦) = 𝑞(𝑦 |𝑥)A(𝑥 −→ 𝑦).
Below we first show within a single step of our method, under

the transition kernel defined in Equation (9) (proposal distribution)

and Equation (21) (acceptance rate), the detailed balance condition

holds for any neighboring sample states (S(𝑡−1) and S(𝑡)), then we

extend the detailed balance condition into the whole Markov chain.

First, for a single step, we have

𝑃 (S(𝑡−1))T (S(𝑡−1) −→ S(𝑡)) = 𝑃 (S(𝑡−1))𝑞(S(𝑡) |S(𝑡−1))A(S(𝑡−1) −→ S(𝑡))

=𝑃 (S(𝑡−1))𝑄𝜃 (s
(𝑡)
𝑗 (𝑡)

|S−𝑗 (𝑡) ,G)min

{
1,

𝑃 (S(𝑡))𝑄𝜃 (s
(𝑡−1)
𝑗 (𝑡)

|S−𝑗 (𝑡) ,G)

𝑃 (S(𝑡−1))𝑄𝜃 (s
(𝑡)
𝑗 (𝑡)

|S−𝑗 (𝑡) ,G)

}
=min

{
𝑃 (S(𝑡))𝑄𝜃 (s

(𝑡−1)
𝑗 (𝑡)

|S−𝑗 (𝑡) ,G), 𝑃 (S
(𝑡−1))𝑄𝜃 (s

(𝑡)
𝑗 (𝑡)

|S−𝑗 (𝑡) ,G)
}

(23)

Similarly, we simplify another side of detailed balance condition

𝑃 (S(𝑡))T (S(𝑡) −→ S(𝑡−1)) = 𝑃 (S(𝑡))𝑞(S(𝑡−1) |S(𝑡))A(S(𝑡) −→ S(𝑡−1))

=min

{
𝑃 (S(𝑡−1))𝑄𝜃 (s

(𝑡)
𝑗 (𝑡−1)

|S−𝑗 (𝑡−1) ,G), 𝑃 (S
(𝑡))𝑄𝜃 (s

(𝑡−1)
𝑗 (𝑡−1)

|S−𝑗 (𝑡−1) ,G)
}

(24)

Combining Equation (23) and (24), we have

𝑃 (S(𝑡−1))T (S(𝑡−1) −→ S(𝑡)) = 𝑃 (S(𝑡))T (S(𝑡) −→ S(𝑡−1)) (25)

That is, the detailed balance condition (defined above) holds. Then

we integrate out S(𝑡−1) on both sides of Equation (25), we obtain

𝑃 (S(𝑡)) =
∫
𝑃 (S(𝑡))T

(
S(𝑡) −→ S(𝑡−1)

)
𝑑S(𝑡−1) =

∫
𝑃 (S(𝑡−1))T (S(𝑡−1)

−→ S(𝑡))𝑑S(𝑡−1) We find that the transition kernel T would not

change the distribution 𝑃 . That is, distribution 𝑃 (·) is a stationary
distribution with a transition kernel T (· −→ ·), i.e., T (𝑃) = 𝑃 hold

for transition kernel. Proved. □

E PROOF OF THEOREM 3
Proof. First, we expand the KL divergence between the target

probability distribution 𝑃 (S|G) and the approximate distribution

𝑃 (S) as: KL(𝑃 (S|G)∥𝑃 (S)) =
∫
𝑃 (S|G) ln 𝑃 (S |G)

𝑃 (S)
𝑑S. Then we focus

on bounding the term ln
𝑃 (S |G)
𝑃 (S)

and expand it as:���� ln 𝑃 (S|G)
𝑃 (S)

���� = ���� ln exp(𝛿R(S, S
truth

))
exp(𝛿 (𝜉1 − 𝜉2Perplexity(S)))

����
=

����𝛿R(S, S
truth

) − 𝛿 (𝜉1 − 𝜉2Perplexity(S))
����

< 𝛿
(
|𝜉1 − 𝜉 truth1

| + |𝜉2 − 𝜉 truth2
| · Perplexity(S) + 𝜖

)
= 𝛿 (𝜏1 + 𝜏2𝜌 + 𝜏3).

(26)

Thus, the KL divergence is bounded as

KL(𝑃 (S|G)∥𝑃 (S)) =
∫

𝑃 (S|G) ln 𝑃 (S|G)
𝑃 (S)

𝑑S

≤
∫

𝑃 (S|G)
[
max

S

���� ln 𝑃 (S|G)
𝑃 (S)

����]𝑑S
=max

S

���� ln 𝑃 (S|G)
𝑃 (S)

���� < 𝛿 (𝜏1 + 𝜏2𝜌 + 𝜏3).
(27)

Proved. □

	Abstract
	1 Introduction
	2 Related Work
	2.1 Background: Markov Chain Monte Carlo (MCMC)

	3 SIPF Method
	3.1 Problem Formulation
	3.2 MCMC Proposal distribution: Pretrained Neural Networks
	3.3 Adaptive Sampling
	3.4 Approximate Target Distribution
	3.5 SIPF Pipeline
	3.6 Theoretical Analysis

	4 Experiment
	4.1 Dataset and Preprocessing
	4.2 Baseline
	4.3 Evaluation Metrics
	4.4 Results and Analysis
	4.5 Case Study
	4.6 Ablation Study

	5 Conclusion
	References
	A Implementation Details
	B Proof of Lemma 1
	C Proof of Theorem 1
	D Proof of Theorem 2
	E Proof of Theorem 3

